
LECTURE 1 NOTES

Metal as a Free Electron Gas

Electrons in a metal are highly mobile (free) , so we
represent them using the Hamiltonian

H = Ñ
-2m

+ Vcr) , (1)

Where Vin confines the electrons to the metal .

We only really consider nuclei for their positive charge in the
"

Je Ilium" model; but we later consider their periodic structure .

Density of States
For a particle in a 3D box , the wavefunction is

I

✗ (E) = 4hL,
÷
É ""

.
(2)

The periodic boundary conditions imply

eik;
/✗it Li )

= eiki" ,
(3)

which if we expand this using de Moure 's formula gives

cos(kjlx;tL;)) + is in (k;(×;tL;D = Cos(Kiki))+ is 1h (k;(×;)) . (g)
This implies

K; L; = 21T nj . (5)

so due to (space) translational invariance , our momentum is quantizedas

I = 2T¥ , 2T¥ , 2T¥) - (6)

Changing to K- space , the number
of states in a volume in K- space is

g. =
V

⇒
dk

. dkzdk
} . (7)



The Dispersion Relation relates energy and momentum as

Ek =
AZKZ

2m
' (8)

To get the number of quantum states
,we integrate 1)(E) which

gives the no . of states in [C- , c- + DE] .

JDCE)dE=§gf(E-E-tide . (a)
I

spin degeneracy

Q : why the 8 function? Where did this come from?

We can convert this integral to a spherical integral due to the
spherical

- symmetry of the Dispersion Relation .

2)9kt -Ek)dE=2(¥p) 41T / tidk - Cio)

Q : How do we know that there is spherical symmetry ink-space
from the Dispersion Relation?

Q : How do we interpret an angular dependence in K- space? If
K is linear momentum , would angular dependence imply angular

momentum? How does this manifest physically?

After a change of variables from K→ E. and integrating, we get

1)(E) = ¥ 2¥ ? Et . (n )

The density of states for dimension M is then given by

p(E)
=D = 5

AM M-1 dlkl

✗ (21-1)
"
t

de
' (12)

degeneracy
where Am is the surface area of an M dimensional sphere .



Q : What's so special about the surface area of
an M-sphere ? Does this come from some physical consideration ?

Fermi - Dirac Distribution
This is given by

f-(E) ceÉ .

(13)

e KT t 1

At -1=0 , this goes to

1
, 0 ( C-(M . (14)ties ¥10 e"¥ { %? me

This is like a step function . so only energies C- EM are filled .
(At -1--0)

We can then define the Fermi Energy as
C- F = M - (151

This gives us
a

N = JflE) DCE) d-C- = Jo (E) de . 1161
0

Using 1111, this gives

E- i. = Em PY " = .

(A)

This defines the Fermi surface
,
where only KEKF are filled.

Q: What's special about -1=0? Experimentally, we
haven't reached absolute zero . Until what temperature

range does this approximation hold?



LECTURE 2

Electrical Conductivity

The Lorentz force law for an electron is

É = - e(É + I ✗ B) . as
For É=O

,
and using Fourier transforms to give an ansatz of

pTt)=p (w) e-
iwt

(2)

Élt)=É (w) e-
iwt

,

(3)

Using the angular frequency W
,
we solve for Ñ as

(w) = - iemw Écw) . (4)

The current density , for n= Ng electrons is then

J (w) = - heÑ (w) = ién ÉCW) . (s)
mw

We define this coefficient as the electrical/AC conductivity

01W) = ien
mw

' (6)

Q : Why is this automatically AC conductivity ? Is it the w?

Note that as w → 0,0-3 A. since resistance was not
considered. Superconductors have no resistance, and this
divergence in the conductivity's imaginary part is a signature .

Q : How do you measure an imaginary term? How is the imaginary
part considered the AC conductivity? Is there a real part?



1) rude Model

If we considerdamping effects, where electrons scatter on average after
time I , Newton 's 2nd Law then gives

dis
at

= - eÉ - E
y

' (7)

Solving this gives
PTW) = et

1- IWT
' (8)

Thus
,
AC conductivity becomes

OCW) = ne'T l

m I - iwz
- (9)

Q : If I'm not mistaken, taking I →a. i - e . no damping
allows us to recover (6) . Is this correct ?

Taking a constant electric field

Elt) = Eo
,

( lo)

we look at the Zero - frequency component of the AC conductivity in (9) .

01W→01=00 = he'T
m

' (Il)

Q : This is a real quantity . Does this mean imaginary :AC, real :DC ?

Heat Capacity
We now consider the thermal transport of electrons . Classically , the
heat capacity is

(c ,
= ¥ NKB .

(12)

However, for low temperatures TKTF -10
"-105K

, only electrons
near EF actually gain the thermal energy KBT .



The total energy is given by
a

U=/f- 1) (E) f-CGT)dE . (B)

The Fermi energy is then given as

C- f-
= ÑZ 3172N }

.

(14)
2M

We can then get the number of electrons as a function of C-F. and the density
as a function of N

N =
V ZMEF ?

and 31T' A2 1
(15)

3N
1) (E) = 2£

'

(lo)
we then can get the heat capacity as

a

(
e,
=
FU ZHE 'T) df . 1171
gy
= /C- DIE) y -1

Since N is not a function of DCE) doesn't really vary at KBTLCEF,
and we take U=EF

, we get ✗ =E -Ee d×=dE

KBT KBT
a (C- -EF)

a

Cel =D(EF) / (E -Eet e
"BT

o
KBT?

DE =/ ✗44515 ex
KBT
' ¥pd× .

(18)

→ - a

C-FLCKBTWe finally get
c.
e,=¥N¥¥T Te, -1

- ""

1- i. = É÷ - Go,
Q : I've never encountered the Riemann Zeta function formally before,
could you explain this step

?



Q : so is the intuition that EF is the energy at TF
? If yes, then since

TF is so large ~ 10 '- To> É doesn't that mean lots of states C-LEF
are indeed filled at low temperatures ? A bit confused about

the intuition behind Ee and Teo

Thermal Conductivity
A thermal gradient leads to an electron 's motion

In a manner described by the heat current

dx
= - § ceil

IT
K : Thermal

jµ=
- K

DT conductivity (21 )
d-✗ / Ñ : mean velocity -

f : mean free path

ce, = CI

Only electrons near EF contribute to the thermal excitation,T=Y= , lathi,
n = Ng , C- i. = KBT -

p
Q : When do you use C- i. = KBTF then?

Using 1191, we get
Ce , = ¥ h KI ¥ . (221

Using C- f-
= MVFZ
-2 ,

we get a thermal conductivity of

K = TY NKBZT Im . (23)

Wiedemann - Franz Law

Considering an electrical conductivity of

Oo = (E) him (241
and thermal conductivity

K = (¥ KBZT) ¥ i 1251



we calculate their ratio as

k

g
= tg (TIKBYT = LT - (26)

e

Equation 126) is the Wiedemann - Franz Law . L is the

Lorenz (Ludwig not Edward ) number which is

a universal proportionality constant .

The Lorenz number is not valid whenever one or both
of the assumptions of the free electron model are

NOT met :

1) same kinds of particles (carriers) are responsible
for both types of conduction .

2) the carriers ( electrons) strongly interact

17 With each other

Q : I'm a bit confused . I thought the free electron model
assumed minimal interaction between electrons

.

Why is it now saying that strong interactions
are an axiom of the model ?



LECTURE 3

CLASSICAL HALL EFFECT

We now consider the case where there is a magnetic field and damping
m

d

dt
+ IT = - e É+JxB . (1)

Where the vectors have the components

D= (V10, 01 , É=(Ex, Ey , 01,13=(0/0,13) . (2)

Ey comes from charge accumulation due to B , while Ex
was applied directly .

Taking the case of no acceleration
,
d¥ → 0, the solution is

✗ : M¥ = - eE× (3)

y : 0 = - eEy tev13 . (4)

Considering the current density as
j = - hey (5)

we get
j×= ne
't -

m
1- ✗
= 0Ex

. (6)

We can then write the steady state velocity as
✓ =

-j×
,

he
(7)

so

Ey= - ¥I× (8)

We can then define the Hall coefficient as

Ey
= -

l

RH = Bjx ne
' (9)



This expression for the Hall coefficient breaks down for some metals,
such as superconductors. The free electron model thus needs

to be improved by taking into account a periodic
potential such as in a crystal lattice or atomic lattice .

Q : Intuitively, what does the Hall coefficient measure?
Why is that the characteristic measure of the Hall effect?
What's a 1-2 sentence description for what the Hall effect

is physically?

Crystals

Crystal - material whose components are arranged periodically
Lattice- Repeating pattern of points .

• •
0¥ : : :

•= .
=;

ID 2D 3D

Lattices .

A unit cell is the smallest portion of the lattice that
has the same symmetry as the entire crystal structure .

Q: Would a unit cell of a 2D Lattice be

¥1 or
•- - • >

d-
- •! •

The position of a point j in the lattice is given by

Ñj = X; di tyjdztzjdz , 1101

where for a simple cubic lattice, the primitive vectors are

I. =D I , I = 25 , I> = a É . ( Il)



Reciprocal Lattice

A Real lattice

Ñ=nidTt hadith >DJ (127

has a corresponding lattice in momentum space (
"
K
"

space)

§ = mibitmzbztmsbz, (B)
Via a Fourier transform .

The Fourier transform gives us the relation for the basis vectors bi
Ji • É

,
= 21T£; . 114)

Thus
,
the primitive vectors in a ID lattice for example are

I = di
,
b- = 2¥ I . 1151

• • • -00 • • • -00
in

21T

a-
Real Space Reciprocal Space .

For an arbitrary crystal structure then , the reciprocal basis vectors are

I
,
= 21T

Ñ×Ñ
g. (g.✗ gg,

,
b)= 21T Ñ' ✗% .

(lo)
g.g.✗g)

HE 21T %Ñ '

aiyazxaj)



Brillouin Zone

Primitive Cell : Unit cell with one lattice point .

In momentum space
,

I. Choose a point
• • Doo ooo •

2. Draw lines to nearest neighbors
• •-•-00 •

3. Bisect lines .

• •-•-00 •

4. Area enclosed is the first Brillouin zone or

just Brillouin zone .

I
• •-•-00 •

-2¥ % 2¥
-

Ia Ia

Q : what is the importance of the Brillouin Zone?

By the way, just want to say thank you for
your lecture notes . They are some of the
easiest to understand readings I've had
as a BS Physics student .



LECTURE 4

IDtTHA

The harmonic oscillator potential approximates the Lenard
- Jones potential .

For identical atoms in a lattice,we can think of them as coupled with

springs of spring constant c.

d Each has mass m .

h- l Un-l n Un Ntl Untl

The motion of one atom is given by
m d-Un

dtz
C Unit - Un t C Un- i - Un - (1)

The periodicity gives the solution ansatz

Uknlt) Re Akeilhka -wt' . (2)

Q : why automatically define a solution in terms ofk?
This gives

-MWZ =c(eikd + e-ika -2) =2c¢os(Ka) - 1) , (3)

which using the identity
251h

? /E) = I - coscx) , (4)

gives us the frequency as
Dispersion .

Relation - WCK) 2 cm sin/ ¥) .
(5)

For small K
.

WCK) = ka cm (6)

Q : How do you solyg.HR this approximation?

¥ ¥
> k



We get the group velocity of the wavepacket as

Vg = %I=a Em cos (E) . (7)

which for small that is approximately constant like the speed of sound

Vg Ia Em . (8)

Q : Just to clarity , this is velocity in real space . Right ?

IDDtAT-MHANM.vn
-l Un Un Unti Un+ I

MZ

We now have equations of motion for m ,
and mz as

M ,

d-Un
dtz

= C Un - Un Un
-i
-Un (9)

m
dVn

= C Um , + Un
- Z Un . (lo)2

dtz

We have the solution ansatz

Un (f) = A , ei
" '" -wt)

(f) = Azeilnka
-wt)

.

(a)

We get the matrices

- 2 It e-
it'd

A ,
• (IZ)

- WZ
M O A "

C
1 + eikd -z0 Mz Az Az

This gives the solution for the frequency

Dispersion . Wz cm
, m
. ¥É¥j - (B)Relation .



Cock)

24Mt
,

For Mi Mai

gÉ Imf
we have two

branches of
Acoustic
?

excitations . > K

¥ ¥

Acoustic : A , -_ Az ( 14)
Two

↳ Atoms move in same direction .

(15)
Wacom. Ftm t¥j± .

2C
For KARI : W acoustic

= ka
m , + m,

Linear ( 16)

Constant like sound wave .

Optical : mAz= - Mz Az (171
Two

↳ Atoms Move In opposite direction .

↳ May have opposite charges : Enfield excitation .

Woptiai Ñm ¥mÉ¥j± . 1181

For KARI : wopt.ca, IÑÉ . Constant ( lg)
MiM2↳ vg=O .

(ZO)Band Gap : DE -_ PE - PE .

Therefore .no vibrations for PE w , . (21)



LECTURE 5

Electrons in a Lattice

'
eriodic Potentials

Fermi energy

] MM MM Lattice of ions

1
a

1 ↳ f- =N is an integer .

For the ID case
,
we can consider the potential as

VIX ) =V(✗ +d) , (1)

so that the Fourier decomposition is
✓ (x)= nivne.int

"

. (2)

Weak Periodic Potential
Potential

The Hamiltonian is
µ pnz

nndepth

zm

+ ZVO cos 2T¥ - (3)

We can treat this as a perturbation of the free particle case

It = Ito + Ñ=^Ho+2Vo cos 2T¥ =^Ho+Vo(e""+ e-it") , (4)
where

K = 2¥ -

(5)

Perturbation theory , up to 2nd order, gives
' (qtoyv /ploy

'

Ép Elp
"
+ (p

'"/Ñlp '"> +
9=1 'p Epo> - Egco,

.

(6)

We note that
1pm> =/ p> =¥eiP× , (7)Free particle momentum :

and
A =/ .

(8)



1st Order Correction :

Due to periodicity

(p / ✓ Ip> = ¥%éiP×ei¥×+éi¥×eiP×d×=O . (g)

2nd Order Correction :

Since Ñ only has two Fourier components, as seen in 141,
only two twins survive in the sum .

pt
^

p

Ep_¥¥

""¥"ei¥+éi¥eip×d×
0 (lo)

pz
2m

-

(Pt ¥12
First term : 2m

pt
^

p Vo
PZ (Pt 2¥)z

-
( Il)

Ei
pt 2¥ 2m

-

2M

p - ¥
^

p Y / (P -¥)×ei¥×+e-i¥×eiP×d×
0 (IZ)

EE¥¥ pz
2m

-

(Pt z

Second term :
2m

p - ¥
"

p Vo

EE¥¥ PZ (p 2¥12 (13)

2m
-

2m

Defining
[
+

= Epics .E¥¥ P2 (Pt ¥5 ( 14)
2m
-

2m

E- = Epl"- EY? PZ (p 2¥12
2m
-

zm
,

( 15)



We find the energy as

E p
'

zm

-

V0
'

Vi
DE

-

DE
.

.

461

We have a problem as DE+ and DE - vanish for p=F .

Q: Is this already a sign that this method is invalid
near p=F¥ , or only precisely at these values ?

We also note that for p=¥, IP> and Ip -2¥> have the same E
'"
.

We thus need degenerate perturbation theory .

Degenerate Perturbation Theory
We introduce a small detaining f. to

" lift the degeneracy!
We then have the nearly degenerate states

Ip,> = Ip> =/ ¥ + f) 1171

113> = Ip -2¥> =/ - ¥ + f) . 1181

The matrix equation for such nearly degenerate states is
H " H" / (I;) =E(%) . 1191
Hzl It 22

Wh"

Hi; = (pi / Ito + ÑIP;) . 120)

This yields ^ It " Hi, ) (¥ + f)' VoH = Hu Hu f? +g)2
- (21)

2m

Diagonalizing this matrix, and reinserting A , gives the eigenvalues
E±ls) = ti t.FE-a.F.cz"

Q :What units does 8 have?

Q : How do you know where to put back A ?



Removing the destining
f → 0, (23)

we find an energy gap

Eg = Et - E - = No . 1241

WCK)

( 1 ,/
second band

1 Forbidden L

1 Band

:\,¥;Én-

¥
(Q: why do we

denote it as Eg In this diagram . If wlk) has units
of frequency? Is this because I =L?

This band gap separates conductors and
Insulators .

Extraneous comments :

I should be 2¥ not
2¥ ?

Shouldn't

these be
L switched?



LECTURE 6
Electrons in a Lattice
Bloch Theorem

Consider a 3D crystal with the lathe Ñ=¥iniÉ and reciprocal

lattice §=É
,
Mi bi

, where the basis vectors satisfy I;Ñ;=2Tfij .
i-4

For ideal crystals, the Hamiltonian and wavefunctions are periodic

1^1-181=1^1-(8+5)
, Yfilñ)=eitiñUñlrT=e"÷rUilñ+Ñ ) . (1)

The eigenstates the are known as Bloch waves functions .
The Schrodinger equation reads

itlrllh:(F) = EIKTIY:(F) (2)
which gives us eigenvalues for a given É .

TD case
For periodicity d. 9 ' we can expand (2) in terms of Fourier components

,
,

zmgxzt Keio
"

e
"" µmei9m× . (3)Elk)eik× µmei9m×= - ti 22

•
'

l

m = - n= -to m= -a

Q : Why are there different m and n indices?

This leads to
a ,

E (k)
'

lfmeilktsmlx tilktgm)
'

lfmeilktsm)×
°

'

•
'

ynymeilktglni.mx
- (4)

m=L
2Me m= -to n= -

'

am= -

We want to match coefficients of e
"""",×so we take m→cm -a) in the double sum

, ,

Vnµmei(kt9lntmDx
°

'

•
'

Un µm.n @
ilktsmlx

. (5)
n=- m = - n=- m = -

Q : why does the sum being convergent allow us to do this ?

Matching coefficients then gives

Ñ(kt9mTµm+
n

'

.vn/Um-n . (b)Elk)Ym= 2.me



This is an eigenvalue problem which gives the infinite matrix

:
- -

-

- -
. :

4h
"
' K'¥-2,9T V , Vz . -

- - - th
th

V., KYktÑ
14

Elk) Yo zme
.

.

. - - .

%
.

(7)

4h, V-2 V., -
- -

. 4h,
i. V

? V
:

'

.

i.

; :

We can solve this by diagonalizing the matrix fonatniteno.at elements ,
by truncating a

.
lmai

Uklx)=
iYme
""~~ ,Yeei9l× . (g)

m= -a l= - Imax

Q: Does Imax have some physical significance?

Considering the simple periodic potential
Vfx)=2UoCos(gx)=Uo(ei9×+e-i9× ) , (9)

We have for lma✗=2 within the first Brillouin Zone
K'Cktzg)

'

Vo 0 0 0¥ Zmetiyktg)' Vo O
g

V2 - ( IO)
14 V0 zme A' k' Vo 14

Elk) Yo Emerick g)' Vo Yo
0

0 V0
V0

zme trick 2954h, 0 -1

4., O O O Vo zme 4-2

From Bloch Theory
,
we note that

µk(X)=µk+¥(×)=Yk+g(×) . ( Il)

This means that we also have periodicity ink- space .

I,E¥# I 1 I
E¥'

l l l

l 1 Hi i it
I 1 I 1 I 1

i i ! F! !
k I I : i

¥ -3¥ -2¥
-

Ia Ia 2¥ ¥
31inch Theorem reduced

Band diagram for first Brillouin Zone
Extended scheme



Note that II is the crystal momentum quasimomentum,
but this is not the true momentum of the electron

as the Bloch state is not an eigenstate of p^ .

ti is the momentum of the combined state Ñ=ktG
,
if G is

the reciprocal lattice vector .

Consequences of Bands

Transport properties
Conductor : Electrons can get excited and surpass EF .

, ELK)
y , ELK)

;I 1

~. in
1 1 I 1

I 1 I 1
Fermi 1 1 Fermi 1

energy . '

energy , i up

¥É¥÷k <÷,€¥÷-m ,?
"

I
I d

Equilibrium Excited

Insulator : First band is full , and there is an energy gap .

, ELK) ,

1

,

EH"
I CAN'TMOVE

1 I

:X I IIE,
I 1 Fermi I 1

Fermi 1 1

energy ,
energy ,

,

i.
k

I
I d

Equilibrium Excited

Semiconductor : Band gap small enough Eg=kBT<3eV, to have

e- thermally excited into empty bands .



Effective Mass

Considering an applied É field , the cheang in energy is given by
☐ c- = F- •DX = - eÉ -ÑDT . ( Iz)

Taking the group velocity as
Vg=dd¥=¥%E , 1131

we can get the infinitesimal change as

dflti)=dEÑdÉ= - EE • f- d¥!⇒dt . 1141
dk

We then have
die
at
= - eÉ

A
' 1151

So F- = da¥=h- DIat ' 110J

We can then get a- by considering (b) , to get

a- = - ELI 1- d- c- (E)
A K DE'

- (A)

Considering the Lorenz force law
É = - eÉ

,
1181

We get the effective mass

m* ¥ d-C- (E)
"

dÉ '
- (191

This is related to the curvature of the dispersion relation C- ( ti) .
We can recover m=m* by considering a free electron .
↳ We also have different signs for m* depending on the

energy band .

Q : Is this curvature interpreted similarly to that in GR?

For example, is the difference between m and -m*

similar to the difference between the inertial
mass and gravitational mass?



LECTURE 7

É

Density of states

For non - interacting bosons. we have the same dispersion relation
C-k

h→Éz
2m

'

(1)

Q : What if the boson
, like a photon is massless? Wouldn't m=O mess it up?

We recall the number of states occupying the energy levels is

JD(E)DE =/98ft -Ek)dt =/¥,>HE -G.)dk.dk.dk} . (2)

There is no factor of 2
, since these are bosons not fermions

with half integer spin . This becomes for an ideal gas

p(e) =D
(t) m :-( ± . (3)

2 IT
' h→

Bose-Einstein Statistics
From a change of sign from the Fermi -Dirac distribution for

fermions
, we have the Bose-Einstein distribution

FB €
e
Elk)-n

'

(4)
KBT - l
t

1- 1h Fermi - Dirac
When we consider the ground state

€1k -_01=0. (5)
the chemical potential is limited as

M
,

(6)

to get a physical system at
0 . (7)

This is because a positive u would give a negative distribution .

The sign of the 1 makes all the

difference .



Bose-Einstein Condensation

Unlike fermions
, multiple bosons can occupy a single quantum state .

This is called Bose-Einstein condensation .

Consider a particle density p (not density of states) -
With fixed T, we increase the no of particles

C- "
de . (8)p /

°

M ? f) Elk)-nf-☐(E)1)(E)DE
z yyz hi KBT - I

o o

We can define

A
2 -1,2 ¥

¥
i (9)

so that we have

u

° C- ±
df . 110)

e Ae KBT Joe - 1

To increase p then, we increase U , up to a max of zero, to get

?
E "

dt .

1117en A) e -1

Using the Riemann Zeta function Gx) gives
←
critical

Pc em A KBT)? (3)SCE) . 44

This is weirdly just a constant , since we've fixed T. So the density of
bosons does not change as we increase the number of bosons .

The reason for this is that there is a mistake when

calculating the mean number of particles using an

Integral instead of a discrete sum T .

This comes from a divergence when U



We can fix this by splitting the lowest energy state from
other excited states as

P Po Pex , 113)

C- :

P Ae ¥3T / e ,÷, . 1
DE - 1141

e ¥1 - I E--0

Approaching U=O
,
the 2nd term is limited by Pc ,

While the first term can be arbitrarily large
since

UCO ( 151%
e÷, - 1

= uB
Q: so essentially the issue awhile ago was that we

only considered the Pex term which goes to peas µ → 0?
Equation 115) means that past the critical density , the new particles
occupy the ground state in Bose-Einstein condensation .

Q : so Po increases as U → 0. So does this mean that
Increasing the number of bosons is what takes a → o?

Q : Wouldn't Increasing -1, while <Tc, also increase Po? Or no as
we've assumed 1- = constant ?

We can get the critical temperature To from

P Pex M , -1=17 A kid? (E)SCE) . 1161

Q : so at Tc, all bosons leave Po?

Q : Why is this equal to the total no . of atoms ? Where did
atoms come in?

The condensate fraction is

no
%

o p ?
e . (17)

eex c

At -1=0
, they're all in the condensate mode .

Above Tc
, they're in excited States

.



LECTUR 8

Weakly Interacting Condensates
Dilute Interacting Bose Gas

The Hamiltonian for N interacting identical quantum particles
interacting via two -particle potentials is

it
"
'

hi '
+Vat Ñlri - F;) . (1)

I 2m
i

-i=L
External
É

potential two - particle potentials
This many - body Hamiltonian neglects other many - particle scattering interactions .
The two - body potential is sufficient for the relatively large length scales of ultra cold atoms.

For ~ 10-31
,
the dominant two - particle interaction is the contact interaction

^
N
,

he 4th'ds ftp. -Ñ;) . (2)N.fi 2

+V Fi,t MH
, zm
i'+Uri,t 9 f(Ñi

-%-)
, zm

i

i=1 icj i= , icj

strength of contact interaction
Gross Rtaevski Equation
If we don't know a priori if there's a BEC , we use the variational approach
known as Hartree-Fock approximation . In finding the ground state,we assume
all N - particles are in the same single- particle energy state .The wavefunction is

N

VICE,rI ..ir?u.t)--0lr-;.t1IU . . .

N
. (3)

j=1

From normalization
,
we have both

IUUI . (4)

We also assume that the wavefunctions and first derivatives vanishat the boundary.
Q:what is the boundary of the system?
Using Lagrange multipliers , we extremize the energy functional

F I 101 UI u IUUI . (5)

Using IBP, we get the kinetic energy as
•

N
' ti
i 2m / ñ 2dg

b-
2

Ekin UI
-EME zm / *

(F)
'

(F)di . (6)
it



The external potential is given by

pot
N / *(F) throcrldr . (7)

The interaction term is

N

int UI g Str: -5) ¥ E)981K. -5) ① lri,t) ' Ocr; ,t)'dridr; (8)icj

int

N """ / 9 (F)
"dñ . (9)

2

Q : where did the time - dependence in go between (8) and (9)?

We can collect all terms that may be written like

☒ HUI Ekin Epot Emt - (lo)

We take the first order variation of Fas
(F) (F) f (F) . 1111

To find the minimum configuration (ground state energy and wavefunction) requires
JF

. (12)
f¢*lñ)

Q : why do we need this? Why is the denominator instead of to?

Each term in the functional yields
f Ekin ti) Efendi 1131
f *(F) 2m

f Epot
N / Vcñocrdr 1141

80TH
f Emt

g. NIN - 1) ftocñspocrsdr . 1151

80TH
The term with the Lagrange multiplier u gives
f UIUI

four,
N f r 'd,

"

"ff0Eñ,gµ*µ,
Olli)dñ Nfctlrldr . 1161

Combining all these terms gives
JFJN-ENDFVcryi-IN-nglocr-si-nolrldr.CH/fo*lr)



This is satisfied when the integrand vanishes, giving the Hartree Equation
-ÑT%(F) + Virgo(E) +GIN - 1) locator> = MOLD . 1181
2m

For large N , N = N - I , we get the Gross - Rtaevski Equation
- tripoli) + Virgo(F) + g N locator)=n¢( f) .

119)
2m

The wavefunction (F) occupied by N bosons is the condensate wavefunction.
The GPE is also known as the nonlinear Schrodinger Equation since

9=0 120

recovers the original Schrodinger Equation .
The nonlinear interaction frm

Vint = 9N
2

(21)

describes the mean - field potential of the N - l particles one one particle .

Spontaneous Symmetry Breaking

Symmetry is broken in phase transitions such as a weakly interacting
boson gas transitioning into a condensate .

When
✓ (F) =D

,
122)

the GPE becomes
- titty (F) + gluten /THE)=uµ( f) , (231
2m

Where the condensate wavefunction as

4hr9 = N ¢1T) . 1241

Energy gets minimized when the wavefunction is flat or uniform .

This means

ttfcr)
.

(251

So

914kJPY (F) my (f)
126)

(27)
914 (f)P M .



The condensate wavefunction is then

→ (Ñ Y NI
, uniform density

'

&)

Q : Do we interpret this as the real part of V1?
-

We can introduce the global phase factor

UCF) e.io .
1291

We can always multiply by an arbitrary phase factor

UCF) Utlrjeio
,

130)

and the GPE doesn't change

This is a gauge symmetry.

In the transition
,
the condensate spontaneously

picks a phase C- [0,21-1] . This preference is
a spontaneous symmetry breaking .

In this case, V11) gauge symmetry is broken
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Introduction to superfluidity
Time - dependent Gross - Pitaevski Equation
The time - independent GPE for a homogeneous interacting gas of bosons
with Vci) =D

,
breaks V4 ) gauge symmetry when the ground state picks

a phase D- as

Yo no e
"

. (1)

We develop a time - dependent GPE for Vlñ)=0
eh 24hr7

Ñ '

Ycñ) + g thriller)
,

(2)
2T 2m

Q : shouldn't this have 41kt) instead of just this ?
With separation ansatz

VIII.t) 4hr7 e-
"¥

. (3)

Since we can only measure energy differences DE
= En -Em instead of the

actual value En
. studying excitations is important .

Low -

energy excitations : non- interacting condensate
For a non - interacting BEC,

g ,
(4)

So the GPE in (2) becomes

if 24hr7
Ñ THE) . (5)

2T 2m

For this linear equation, we take the ansatz

VIII.t) I e¥te
""" - wt)

. (g)

Since the non-interacting Bose gas has µ , we have the dispersion relation

Gi Aw
Katia
zm
+ M . (7)

This is the quadratic relation of the free -particle case, but with an

energy gap at Ñ=O from u .

Low -

energy excitations : weakly interacting condensate
We assume a repulsive interaction

g ,
(8)

and phase
. (9)



We Includeexcitations above the ground state by adding plane - wave solutions
int '

4151-1 Yoe a

g.
Hiei ""

-¥wt

,

'

,

ieiti.it#wt
,

yo,

where

Uti dk-Yo.li BE Yo . 1111

We only consider low momentum excitations, and thus 1h linear order of

amplitudes that are real
u, UE , v, v,É . 112)

Thus
, we get the LHS of 5 as

int

i-h2YlF)
⇐ftp.ieti-i-h?wt,;,eiti-r+-YwtztM4fehM-hwu tnw

.

( 137

The first term on the RHS gives
'

titi 'ti 24cg,
'

titi ' yyieti.in?wt.zmkeiti-i+-hMwt . (14)
2M

I
' 2m

ti

The second term on the RHS
,
when only considering first -order in amplitudes is

int '

94hr
'

Ylñ=g Yo
'

yfeñ
,
1,24: ieiti.in?wt,.2iueeiti-r+Fwt/.(is:)

We can then compare coefficients as

( ;) e-
"¥ U g yo

'

(Ib)

Iii)eiti -i - a?wt at_hw u,
titi '

zm
UÉ MZUÉ E 1171

liiijeiti-r-t-nmwtu-hwititizn.IM 2 I UE .

118)

Iiit and Ciii) Can be combined to give the matrix equation
A-tieUE
zm
+N MAw

y:
Ui

-µ
Katie
2mm

VE
' (19)



This gives the Bogohubov Dispersion

⇐ Aw?⃝É"
"

-

(zo)2m 2m

This is linear for small I

b-2k¥, AZIZ

EE = 8am th ti mm KI shmo , 1211
m

where no Yo ? Not the non-interacting case is quadratic . However,
120) is actually quadratic for large I , as kinetic energy dominates

Gi titi
2m

"

Elk)

i - ti
free r

particle
+ ,

-

'

'

- -

- Bogoliubov
dispersionµ ~k

k
sound- wave Free- particle
regime regime

Note the Bogohubov dispersion being gapkss and linear for small ti .
This idea of the Goldstone theorem is what distinguishes 9
superfluid from 9 non - interacting condensate .

Q: Are there forms of weakly interacting condensates that
are not superfluids?

Q : How does the broken symmetry result in gaplessness?
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Propertiesofasuperfluid
Dissipates

Superfluids don't lose kinetic energy, and thus have zero viscosity, below a
critical velocity . This is especially interesting since there is no energy gap .

For a homogeneous gas of particles in a pipe with total mass
M = nm CD

the kinetic energy in the rest frame of the pipe is

J
'

MÑIZ . (2)
kin 2

,
1

In the moving frame of a portion of the fluid with velocity V, we have

mvi. M
'

E M
k,nÑ 2

"

m Ñi
"

i

"

,
z

? (3)
i
' 2

The ground state of the condensate is the stationary configuration 15=0

f- µ
2

2
'

(4)
kin

We can expect backscattering or excitation in the opposite direction of the motion
due to the walls of the pipe with energy E-(F) and momentum F.

In the rest frame : Eea E E (5)

In the moving frame : Eea E E F M
'

z
' (6)

The change in energy due to the excitation is

exc kin
C- (F) B.Ñ . (7)

An excitation is thus only created it ,
or

C- (F) F. .
(8)

Q : How does an excitation in the opposite direction to flow ever increase
the energy DE> 0 ? Isn't it like friction?

The Landau Criterion states that no excitations are created when

c

Mth C-Cpj
F p

' (9)

Q : If different portions of the fluid move at different velocities Vi,
do they all need to be < Ñc? Or only the average velocity?



For a non - interacting condensate
C-(f) =

Ñ
2M

- (lo)
Thus

,

,

Min F' mm F
. ( Il)

É 2mF F 2m

Then even infinitesimal excitations induce dissipation .

For a weakly interacting condensate , for small momenta

C- (E) = A ti Sno
m

(12)

C- (F) 59h0
m

' ( 13)
Thus,

, my ¥910 MM 9h0
m

( 14)É m

9h0

Q : It says 9h0
m
only in the notes . Shouldn't there by a M ?

The linear dispersion at low momenta allow for this to be a superfluid .
Irrotatronal Flow

Multiplying 44M to the time-dependent GPE gives

ihYEr, 24hr7 -ti
at 2m

4TH that Very /Ycryitg this " . (15)

The complex conjugate is
*

ihucr, 24hr7 -ti
at 2m4cm

'

AM + Very /Ycryitg this " . ( 16)

Subtracting 116) from 115) and manipulating yields
24hr72 tn
at 2mi

' 4TH %) Wry Y*(ry .
1171

This has the form of the continuity equation

2p
at

' J - ( Ioe)

Therefore the particle density is

p= 4ft
2

119)

and current density

J Hmi 4*181 Ury this ✗*(F) ' (201

We note that
j=pJ . ""



so it can be shown that we can express J in terms of the phase
ti
m

F - (ZZ)

The line integral of the velocity field is the circulation

f.Ñodl If dÑ
.

123)

since the curl of a gradient vanishes,
. (241

Thus
,
a superfluid is lrrotatroual . It tends to stay

at rest in a slowly rotating container . For last
rotation, vortices form to retain irritationat flow
and conserve angular momentum .
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ÉwdB
Basic microscopic concepts

Cooper pairs ,made up of two bound electrons, are bosons forming a
superfluid below a critical temperature Tc . They have an effective
attractive interaction due to electron -phonon interactions .

Cooper pairs carry super currents in superconductors .
i

E.E s

Cooper Pain
Electron 1 attracts Electron 2 is (weak bond )
positive ions attracted by distortion
t=o t=t ,

Q:What does it meanwhen the electron - phonon is retarded in time ?
Phenomenology
Properties

1. Zero resistivity: DC resistivity vanishes below Tc .
P P,

f. { (15--0)
0

>
T

Normal conductor
Tc

> T
°

Superconductor
2. Perfect Diamagnetism : Superconductors expel weak Ñ fields .
The Meissner effect has screening or surface currants cancelling applied Ñ fields .

*

Normal
conductor superconductor

3. Superconducting energy gap : Gap between Cooper Pairs and single -particle
excitations of electrons . This energy gap is related to the energy needed
to break a Cooper pair . This gap is what makes excitations like

scattering of electrons Impossible .
Conventional superconductors : Tc - l - 10K
High - temperature superconductors : Tc 30K.



London Equations
These relate EM fields inside and outside the superconductor .

Recall from the Drude Model

dis F
z
e ,

(1)

dt
With current density

g new .
(2)

Since in superconductors there is no dissipation damping
T D , (3)

so we have the

Nse
'

First London Equation : 2J
m

.
(4)

at

This leads to the conductivity

01W)
JCW) iéhs I

(5)

m w
'

(w)
This w dependence is a signature of superconductivity . We expect a
diverging imaginary part as w

Faraday 's Equation is

c
2tB .

(6)

Substituting (4) into this and manipulating yields
2

at j +
Me

>

B- .
(7)

me

However
.
the Meissner effect requires the inside to vanish

j Me
>

B- . (8)
me

We show this requirement by first considering the Maxwell equation

B 41J + d2tÉ . (9)

For the static case

2tÉ = 0 - ( lo)

Q : so does superconductivity require a non- time varying É ?



This gives
B- 411J . 411

We take the curl of this

B- 471 J . (121
C

Expanding this and considering Gauss ' law for magnetism
• B ,

113)
we get

2ps 4 Tlhsépg
ma

' ( 141

The solution to this takes the form

B- (E) L e - 1151

The length scale is the London penetration depth
MCZ✗ 471m€ ' ( Ib)

This exponential decay describes surface currents
which screen the applied B- field .

Outside
InsideBo

surface
of

superconductor


