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ABSTRACT

DYNAMICS AND STRANGE ATTRACTORS OF STELLAR
PULSATION IN ONE-ZONE MODELS OF LONG-PERIOD

VARIABLE STARS

Jesus Miguel A. Yulo II
University of the Philippines (2022)

Adviser:
Michael Francis Ian G. Vega II,
Ph.D.

We explore the solutions of two one-zone models of the pulsation of long-period

variable stars, which are described by dynamical systems in terms of the radius r,

radial velocity v, and pressure p. In the first model, the opacity exponents are taken

to be the constants n = 1 and s = 3. Our novel finding is that this model has an equi-

librium curve in the (r, v, p) phase space parametrized by (r, 0, r−4). We discovered

that phase space trajectories emanating near the conventional fixed point (1, 0, 1) will

tend to spiral towards other fixed points along this curve. The second model, on the

other hand, involves dynamically evolving opacity exponents. The presence of these

exponents then permit the presence of chaotic solutions. These are of much interest,

as many long-period variable stars are known to exhibit chaotic pulsations. The com-

pelling result we discovered for this case is that the non-adiabaticity route to chaos,

from variation in the control parameter ξ, produces a “y”-shaped strange attractor in

its Lorenz Map for parameter values a = 20 and ξ = 0.12, that had previously only

been seen in the κ-mechanism route to chaos, from variation in the control parameter

a, with parameter values a = 13.5 and ξ = 0.08. This may mean that long-period

variable stars such as S Vul and WY And that had previously been identified as hav-

ing observational Lorenz Maps corresponding to such “y”-shapes, could just as well

have these features explained by the non-adiabaticity route to chaos, as from the pre-

viously posited κ-mechanism route. In order to further allow for future comparisons

of the chaotic solutions of this model to observational data, we performed time-delay

embedding reconstructions using both pairs of the parameters corresponding to these

“y”-shaped Lorenz Maps. We found an optimal delay time τopt ≈ 80 and minimal em-

bedding dimension de = 3, when the radius r was used in the reconstruction. When

v was used, we found the optimal values to be τopt ≈ 73 and de = 4.

PACS: 97.30.-b (Variable stars), 05.45.-a (Nonlinear dynamical systems), 95.10.Fh
(Chaos; astronomy)
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Chapter 1

Introduction

Twinkle, twinkle, little star,
How I wonder what you are!

Jane Taylor
The Star

Looking up at the night sky, it is easy to become mesmerized by a plethora

of twinkling points of light. This apparent twinkling, however, is not a feature of

stars themselves, but is rather an aberration of their light as it passes through the

Earth’s atmosphere. That said, nature does rescue our childhood nursery rhyme

though with the existence of variable stars. These are stars that exhibit variations in

their brightness over time because of the physical processes ruling their dynamics.

Variable stars, or stellar pulsators, have been indispensable to astronomy since

their first discovery centuries ago. The most popular variable stars, the classical

Cepheids, exhibit regular periodic pulsations. Cataloguing observations of these stars

led Henrietta Swan Leavitt to notice that the brighter Cepheids also had correspond-

ingly longer periods of pulsation. Thus, by recording their pulsational periods, the

absolute magnitude and apparent magnitudes of luminosity could then be easily cal-

culated. This has led to classical Cepheids being dubbed “standard candles” as they

serve as metrics of distance when surveying the heavens [8].

While classical Cepheids have pulsational periods on the order of a few days or a

few weeks, some classes of variable stars have been observed to exhibit luminosity vari-

ations with periods on the order of months. These long-period variable (LPV) stars

have been of much interest in recent decades due to complicated features present in

their luminosity time-series (light curves). Since these are intrinsic variables, meaning

that their oscillations are not due to the gravitational influence of a binary partner or

1



Figure 1.1: Hertzsprung-Russell diagram of stellar pulsators.

the transit of an exoplanet, the study of their pulsations may have much to say about

the physical processes present within these stars. In fact, certain LPVs have even

been known to exhibit irregular or even chaotic oscillations. The ability to model and

extract physical insight from these perplexing behaviors thus breeds much enthusiasm

for their study.

1.1 Long-period variable stars

While there is some debate and disagreement over exactly what subclasses of

pulsating stars fall under the definition of long-period variable stars, we consider the

classification used by the American Association of Variable Star Observers (AAVSO)

[33]. This includes some pulsators from the red and yellow giant and supergiant

classes such as RV Tauris, Miras, and Semiregular variables. As such, these stars are

old and relatively cool, as can be seen from the RV Tauri and Mira variables in the

Hertzsprung-Russell diagram in Figure 1.1 1.

Since these stars are found on the Asymptotic Giant Branch (AGB) and post-

Asymptotic Giant Branch (post-AGB) of their evolutionary tracks, they feature nu-

clear fusion of heavier elements. Specifically, these stars have helium-burning shells in

addition to hydrogen-burning shells surrounding a carbon-rich core [28]. This fusion

1HR diagram retrieved from: https://www.atnf.csiro.au/outreach/education/senior/astrophysics/variable
pulsating.html.
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Figure 1.2: The prototype RV Tauri variable RV Tauri (left) and the prototype
Mira variable Omicron Ceti (right) taken from the ESO Online Digitized Sky Survey.

of heavier elements is an indicator that these are dying stars that are in the final

stages of their evolutionary processes, before they transition into becoming white

dwarfs and planetary nebulae. There is thus some existential significance in studying

these geriatric stars, as the physical processes governing them are what create and

form future generations of stars and planets. In a way then, Dylan Thomas might

say that long-period variables are stars raging against the dying of the light 2.

While these stars may extend to up to thousands of times the size of the Sun,

these are in fact stars of low or intermediate mass. Their masses range from below

1 M⊙ to around 10 M⊙, where M⊙ represents the mass of the Sun. Prototypes of

RV Tauri and Mira variables can be seen in Figure 1.2 3. The star RV Tauri is a

post-AGB yellow supergiant, while Omicron Ceti is an AGB red giant.

The luminosity variations exhibited by these stars are thought to be due to the in-

stabilities and opacity variations present from the layering of different nuclear burning

and ionization zones. It is important to note that the luminosity variations are not

just a dimming and brightening of the stars alone, but also correspond to contractions

and expansions of the stellar surface.

Although LPVs are classified based on their having luminosity variations with

periods of a few dozen days to upwards of 1000 days, there is in fact much debate over

how to even define a period for these stars due to their often irregular oscillations. For

many LPVs, a characteristic feature of their light curves is the presence of alternating

deep and shallow minima [5, 19]. Thus, some choose to define the period of variation

as the time between successive deep minima [28]. However, these still are often not

2Referring to the poem Do not go gentle into that good night by Dylan Thomas.
3RV Tauri and Omicron Ceti images retreived from the ESO Online Digitized Sky Survey:

https://archive.eso.org/dss/dss.
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Figure 1.3: Schematic diagram of a one-zone model. (Not to scale.)

uniform enough to define a clear periodicity. For some of these variables, the discovery

of low-dimensional chaos in their oscillations has proved fruitful for further analysis

and modelling [7].

1.2 One-zone models

The question then becomes how it is best to model these stars and their pulsations.

The answer to this question depends upon the kind of information one wishes to

extract from the modelling. One route is through detailed hydrodynamic codes that

take into account the specific layering of nuclear burning and ionization zones within

the star. While the results from these may be robust, it may be difficult to extract

intuitive physical insight into what exactly is causing certain features of the stellar

oscillations.

Another route is to consider simple toy models with a minimal number of moving

parts, which can serve as a pedagogical tool for insight into the physical processes

in these stars. This method still allows for an assessment of the effects of changing

certain global parameters such as the adiabatic coefficient, the form of the opacity

law, etc. These models can then be stated in terms of sets of nonlinear differential

equations. Using a dynamical systems approach then, the irregular features of the

oscillations of these stars such as low-dimensional chaos may be assessed [6].

One class of models in line with the latter approach are the one-zone models of

stellar pulsators first put forward by Baker (1966) [2]. In this model, we have what is

essentially a point mass M containing much of the stellar mass surrounded by a thin

spherical shell of mass m, with radial extension R, representing the “surface” of the
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star. The processes within the star then result in a pressure P acting on the shell.

When writing down Newton’s 2nd Law for a star, we usually use Euler’s Equation

for a continuous mass distribution given by

ρ
d2R

dτ 2
= ρ∇U−∇P, (1.1)

where U is the gravitational potential, ρ is the density, and τ is time. However,

since the one-zone model involves two discrete masses instead of a continuous mass

distribution, we are able to simplify this to

m
d2R

dτ 2
= −GMm

R2
+ 4πR2P. (1.2)

In this study, we only consider radial oscillations, so the force from the pressure P

takes this spherically symmetric form. The equations of motion of the stellar surface

then all flow from Equation (1.2), after the form of the pressure P is specified from

a stellar energy equation.

1.3 Dynamical systems and chaos in the model

In understanding the temporal behavior of a star described by a one-zone model,

it is useful to use a dynamical systems approach. Through this, equations of motion

may be written down for the system through a set of nonlinear ordinary differential

equations (ODEs) describing the temporal evolution of the radius, radial velocity,

and pressure of the star.

Since these equations are nonlinear, finding analytic or closed-form solutions is of-

ten impossible or unwieldy. The dynamical systems approach makes use of numerical

integration to survey the temporal evolution of the system of ODEs [40]. Through

phase plots, the long term behavior of the variables may be assessed through qual-

itative analysis giving insight into periodicity, asymptotic behavior, chaos, among

others.

Due to the purported presence of low-dimensional chaos in the oscillations of long-

period variable stars, the ability of one-zone models to render chaotic solutions is of

keen interest. Since chaos would appear as non-repeating non-random patterns in

time-series of variables, the ability to characterize the geometric properties of the

strange chaotic attractors of the system requires numerous mathematical tools such

as Lorenz maps, time-delay embeddings, Lyapunov exponents, and others [17, 22, 27].
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1.4 Statement of the problem

While one-zone models are relatively simple, the ability to tune certain physical

parameters allows for a wide range of possible behaviors of the stellar pulsation.

We first consider a one-zone model wherein the opacity exponents are constants.

We seek to determine the possible final states of a star after a small perturbation

from equilibrium.

We then probe the long-term behavior of the system when the opacity expo-

nents are no longer constants, but are instead dynamical functions of the radius and

pressure. Two different period-doubling routes to chaos are explored. One is from

variation in the control parameter a controlling the strength of the κ-mechanism, and

the other derives from variation in ξ controlling the amount of non-adiabaticity.

It then becomes pertinent to characterize and compare the strange chaotic attrac-

tors from both routes to chaos. We seek to find if there are any similarities or generic

features of the chaos deriving from these two different physical processes. This is

done via the the use of Lorenz maps and time-delay reconstruction of the attractors.

1.5 Significance of the study

Since long-period variable stars do not exhibit pulsations as regular as other vari-

able stars like classical Cepheids, the ability to shed more light on some of the physical

processes governing their behavior is of much importance. We hope to contribute to

the use of one-zone models as instructive pedagogical tools in the examination of

these twinkling lights in the sky.

Furthermore, since observations of these stars from amateur astronomers or even

space telescopes may only give time-series of one or a few physical variables, the

features of chaotic variability may be difficult to interpret. Through the use of Lorenz

maps and time-delay reconstructions, fundamental features of the strange attractors

are revealed using only one physical variable. It is then possible for these results to

potentially be compared to new observational data from observations of these stars.

1.6 Outline of the manuscript

This work is split into seven chapters. In Chapter 2, we develop the preliminaries

of the dynamical systems approach that is used to analyze the temporal evolution of
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the system. Next, the mathematical toolbox for chaotic analysis is expounded upon

in Chapter 3. We then motivate the one-zone models and the physical processes

that they describe in Chapter 4. The dynamical behavior of the one-zone models is

the subject of Chapter 5. Chapter 6 deals with the analysis of the strange chaotic

attractors of the model that features dynamically evolving opacity exponents. Lastly,

we state our conclusions and insights into possible future work in Chapter 7.
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Chapter 2

Dynamical systems preliminaries

That is why man cannot be happy:
happiness is the longing for repetition.

Milan Kundera
The Unbearable Lightness of Being

While writing Newton’s 2nd Law for a one-zone model as in Equation 1.2 may

seem deceptively simple, once we specify the pressure P via a stellar energy equation,

it becomes apparent that the differential equations governing the system become

highly nonlinear. This means that a closed form solution describing the temporal

evolution of the star is unlikely or even impossible. This then merits the use of a

dynamical systems approach wherein we numerically integrate the set of differential

equations describing the equations of motion of the system. Through phase plots, we

can visualize the trajectories the variables describing the system take over time [16].

This leads us to qualitative insights into the long-term behavior of the stars described

by the one-zone models.

In this chapter, we present an introduction to the language of dynamical systems.

A more comprehensive development of the topic can be found in many well-established

reference textbooks [12, 16, 40].

2.1 Defining a dynamical system

The definition of dynamical systems includes both iterated maps with are discrete,

and systems of differential equations which are continuous [40]. For the purposes of

this work, we will deal mostly with the latter.

We define our dynamical system in general by a set of d ordinary differential
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equations
ẋ1 = f1 (x1, . . . , xd)

...

ẋd = fd (x1, . . . , xd) .

(2.1)

Here, we use dot notation to indicate a derivative with respect to our dimensionless

time t as

ẋj =
dxj

dt
, (2.2)

and our index runs from

j = 1, . . . , d. (2.3)

It should be noted that the functions fj show no explicit dependence on our

dimensionless time t, and only depend on our state variables x1, . . . , xd. Thus, we

may call our system an d-th order1 or d-dimensional autonomous system. A system

with an explicit time dependence would be considered non-autonomous. The analysis

in this work is confined to autonomous differential equations, so we will not spend

further time developing ideas for non-autonomous systems.

2.2 Phase plots

The state of a dynamical system tells you the values of the state variables at

a particular time. For example, for an initial time t0, our system would be in the

state of initial conditions (x1(t0), . . . , xd(t0)). A state at a later time t1 would then

similarly be written as (x1(t1), . . . , xd(t1)). If we trace out the curve connecting these

two states, we would have a trajectory of the system [16]. We get this trajectory by

simultaneously solving the differential equations in our system. For our purposes, we

use numerical integration to achieve this.

This trajectory is part of what is called a phase plot or phase portrait, and it is

drawn in what we call phase space. The number of dimensions of the phase space

is equal to the order of our dynamical system. For example, a 2nd order dynamical

system would have a 2-dimensional phase space. In Figure 2.1, we show a sample

trajectory for such a system in a 2-dimensional phase space.

An important thing to note is that trajectories of a particular dynamical system

cannot cross. This is guaranteed by the Existence and Uniqueness Theorems [40].

1This is not to be confused with the order of an ODE, which indicates the order of the derivative.
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Figure 2.1: Sample trajectory of a 2nd order dynamical system.

This means that the choice of initial conditions uniquely determines the temporal

evolution of the dynamical system.

2.3 Dynamical systems as vector fields

Dynamical systems are also thought of by considering the “flow” of trajectories.

The natural way to visualize this would be through the use of vector fields in the

phase space. We can thus recast our dynamical system from Equation 2.1 as a vector

equation

ẋ = f(x). (2.4)

In this form, we have

x = (x1, . . . , xd) (2.5)

f(x) = (f1(x), . . . , fd(x)) . (2.6)

Using this, we can assign a vector to each point along a trajectory in a phase

portrait that points along the direction of the flow. This allows us to get qualitative

insight into how the state variables of the system are tending to behave in a particular

region of the phase space. In Figure 2.2, we show some of the vectors indicating the

direction of the flow along our sample trajectory.

2.4 Equilibrium solutions and stability analysis

Now that we have established a means to understand flow in a dynamical system,

it is important to consider states of the system where the flow becomes zero

ẋ = 0. (2.7)
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Figure 2.2: Vectors showing the direction of flow along a trajectory.

In phase space, these equilibrium solutions can be points, curves, or even planes

in higher dimensions. When these solutions are simply points, we call them fixed

points. We define these fixed points as

x∗ = (x∗
1, . . . , x

∗
d) , (2.8)

which satisfy

f(x∗) = 0. (2.9)

While once a trajectory reaches a point on an equilibrium solution, it stays there

forever, it is of much interest to consider the qualitative behavior of the flow around

a small displacement from the equilibrium solution. This is where stability analysis

comes in. In crude terms, when trajectories around such a point tend to move towards

it, we consider the point as stable. When trajectories tend to move away from it, we

call it unstable. There are numerous ways to classify such equilibrium solutions, and

we will discuss one of them here.

When the equilibrium solution is a fixed point, we can perform a linearization

about it. We conduct our linear stability analysis by first defining a small displace-

ment away from the fixed point as

η = x− x∗. (2.10)

Since x∗ simply contains constant entries, differentiating η with respect to t just

yields

η̇ = ẋ = f(x+ η). (2.11)

We can then perform a Taylor expansion of this to get

f(x+ η) = f(x∗) +
∂f

∂x

∣∣∣∣
x=x∗

η +O(η2). (2.12)
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Clearly by Equation 2.9, the first term vanishes. We further disregard higher order

terms as negligible [40]. This then allows us to simplify this to

f(x+ η) =
∂f

∂x

∣∣∣∣
x=x∗

η. (2.13)

We can then define the Jacobian matrix, which is a matrix containing first partial

derivatives of our functions fi with respect to the state variables. This is written as

J =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xd

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xd

...
...

. . .
...

∂fd
∂x1

∂fd
∂x2

· · · ∂fd
∂xd


(x∗

1,...,x
∗
d)

. (2.14)

This then allows us to rewrite Equation (2.11) as

η̇ = Jη. (2.15)

It now becomes evident that we can treat this as an eigenvalue problem. We can

find solutions for η as a linear combination including the eigenvalues of eigenvectors

of J. This can be written as

η(t) =
n∑

i=1

Cjvje
λjt, (2.16)

where λj are the eigenvalues, vj are the eigenvectors, and Cj are constant coefficients.

We can see that it is the eigenvalues that determine the growth of the initial

displacement from equilibrium. In general, the eigenvalues are complex quantities,

and we can thus split them into their real and imaginary parts as

λj = αj + iµj. (2.17)

This allows us to restate the exponential in Equation 2.16 as

eλjt = eαjteiµjt. (2.18)

It is useful to recast this using Euler’s formula as

eλjt = eαjt (cos (µjt) + i sin (µjt)) . (2.19)
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Stating the exponential in this form then more intuitively reveals to us that the

real part αj determines the growth of the initial displacement η from equilibrium.

If αj is positive, we expect the displacement to grow larger. We then expect the

displacement to shrink if it is negative. The imaginary part µj on the other hand

governs its oscillatory behavior [34].

Going back to the idea of flow, a shrinking perturbation η would entail that

trajectories tend to move toward the fixed point, rendering it stable. A growing

displacement would then mean trajectories tend to move away from the fixed point,

making it unstable [34].

An important question to ask is what role the eigenvectors vj play in this. The

eigenvectors in fact determine the direction of the stability or instability that we assess

from their corresponding eigenvalues. Since we have d eigenvalues and eigenvectors

for a d-dimensional Jacobian J, we would be assessing the stability along d directions.

While it is a powerful tool for many fixed points, there are limits to linear stability

analysis. For example, we may have cases wherein there exists an eigenvalue that has

a zero real part or is even entirely zero. It then becomes impossible to determine from

Equation 2.19 if we expect a growing or shrinking perturbation.

Another case to consider is when the equilibrium solution is not just a fixed point

but is a curve, a plane, or some other kind of surface. Since this case would imply

each equilibrium point has an adjacent equilibrium point in some direction, we have to

resort to other means of analysis such as plotting the vector field near such equilibrium

solutions.

2.5 Classification of fixed points

Now that we have discussed the process by which we conduct linear stability

analysis, we now present the classification of such fixed points.

We first begin our discussion for fixed points in a two-dimensional dynamical

system. The eigenvalues of a two-dimensional Jacobian can directly be solved for by

calculation of the trace Tr(J) and the determinant Det(J) [40]. These eigenvalues

are found using

λ1,2 =
1

2

(
Tr(J)±

√
Tr(J)2 − 4Det(J)

)
. (2.20)

Using this equation then, we can then classify fixed points based on the resulting

form of the eigenvalues. In Table 2.1, we present the classification of such fixed points.

13



Det(J) < 0 Det(J) > 0

Saddle Point
Tr(J) = 0 Tr(J)2 − 4Det(J) > 0 Tr(J)2 − 4Det(J) < 0

Center
Tr(J) < 0 Tr(J) > 0 Tr(J) < 0 Tr(J) > 0
Stable Node Unstable Node Stable Spiral Unstable Spiral

Table 2.1: Classification of fixed points in a two-dimensional phase space.

Type of Fixed Point Behavior of Trajectories

Saddle Point Attracted in some directions, repelled in others

Center Neither attracted nor repelled

Stable Node Attracted

Unstable Node Repelled

Stable Spiral Spiral towards it

Unstable Spiral Spiral away from it

Table 2.2: Behavior of trajectories around fixed points in a two-dimensional phase
space.

Figure 2.3: Behavior of fixed points in a two-dimensional phase space. Retrieved
from [29].

The subsequent descriptions of the behavior of trajectories around such fixed points

can be found in Table 2.2 and Figure 2.3 [29].

Moving on to fixed points in a three-dimensional dynamical system, the form of

the eigenvalues cannot as easily be determined from the trace and the determinant.

We must explicitly evaluate the results of the three-dimensional Jacobian, and base

our classification on the signs of the real αj and imaginary µj parts of the eigenvalues.

Furthermore, the added dimension makes the three-dimensional cases more complex.
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Form of eigenvalues Classification Behavior of trajectories

α1,2,3 < 0, µ1,2,3 = 0 Stable Node Attracted

α1,2,3 > 0, µ1,2,3 = 0 Unstable Node Repelled

µ1,2,3 = 0, α1 > 0 ∧ α2 < 0 ∧ α3 ̸= 0 Saddle
Attracted in some directions,

repelled in others

µ1 = 0 ∧ µ2,3 ̸= 0, α1,2,3 < 0 Stable Focus-Node
Attracted in some directions,

spirals towards in some
other directions

µ1 = 0 ∧ µ2,3 ̸= 0, α1,2,3 > 0 Unstable Focus-Node
Repelled in some directions,

spirals away in some
other directions

µ1 = 0 ∧ µ2,3 ̸= 0, α1 > 0 ∧ α2,3 < 0 Saddle-Focus
Attracted in some directions,

spirals away in some
other directions

µ1 = 0 ∧ µ2,3 ̸= 0, α1 < 0 ∧ α2,3 > 0 Saddle-Focus
Repelled in some directions,

spirals towards in some
other directions

Table 2.3: Behavior of trajectories around fixed points in a three-dimensional phase
space.

For example, the focus-node acts like a spiral in some directions, and like a node in

others.

We present the classification of fixed points in a three-dimensional phase space

and their corresponding behaviors in Table 2.3. These are visualized in Figure 2.4

[15].

While there are other forms of fixed points called non-hyperbolic equilibria, these

often require higher order terms in the Taylor expansion in Equation 2.12 [15]. We

will therefore not present them here, as the systems we are studying do not exhibit

such fixed points anyway.

2.6 Periodicity

Often in dynamical systems, we find solutions wherein the trajectories are re-

peating or periodic. This can be stated as

x(t) = x(t+Π), (2.21)

for some period Π.
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Figure 2.4: Behavior of fixed points in a three-dimensional phase space. Retrieved
from [15].

This repeating pattern can be seen when we plot a time-series of one of the state

variables. In analyzing such periodic solutions, it is also pertinent to pay attention to

some of the features of the oscillations. Thus, we have the concept of “counting” the

periodicity of such solutions. If in each repeating cycle, we have one maxima, we call

this period-1. When we have two maxima per cycle, this is period-2, and so on and

so forth. In Figure 2.5, we show sample period-1 and period-2 time-series for some

state variable x1(t).

Periodicity can also be visualized via phase plots. In phase plots, these periodic

solutions take the form of limit cycles. Limit cycles are isolated periodic solutions,

meaning that nearby trajectories either move toward or away from limit cycles. This

means that these nearby trajectories aren’t closed [40].

We can also count the periodicity when viewing a phase plot. Instead of counting

the number of maxima per cycle as in a time-series, we count the number of rings

making up the limit cycle structure. This can be seen in Figure 2.6, wherein we have

1 ring for the period-1 case, and 2 rings for the period-2 case.

It is important to note that it may take some time for trajectories emanating
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(a) Period-1 (b) Period-2

Figure 2.5: Sample time-series of a state variable x1(t) showing period-1 and period-
2 solutions.

(a) Period-1 (b) Period-2

Figure 2.6: Sample phase plots of state variables x1(t) and x2(t) showing period-1
and period-2 solutions.
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from some initial conditions to settle onto a limit cycle. It is expected for there to

be transient behavior in the phase plot that may not be periodic, before trajectories

settle onto the limit cycle.

An important phenomenon we will be exploring later on in this work is the period-

doubling route to chaos. This is the process by which the variation of a parameter

or coefficient, in one or more of the differential equations making up the dynamical

system, leads to period doubling.

For example, let’s say we have a parameter σ. When σ = σ1, we have a period-

1 limit cycle solution. After we increase this to some value σ2, and re-solve the

differential equations, we end up with a period-2 solution. This cascade goes on as

we continue varying σ, and get period-4, period-8, and period-16 solutions and so on

until at some critical value of σ we end up in a chaotic regime.

Chaotic solutions manifest as non-repeating non-random oscillations in time-series.

Thus, chaos is aperiodic. In phase plots, chaotic solutions can appear as trajectories

seeming to densely occupy some region of the phase space.

Perhaps the most famous example of a chaotic system is Edward Lorenz’s attractor

[21]. This dynamical system, which was constructed as a simple weather model, is

made up of the three ordinary differential equations given by

ẋ = σ (y − x)

ẏ = x (ρ− z)− y

ż = xy − βz.

(2.22)

In Figure 2.7, we plot a chaotic solution to the Lorenz equations with parameter

values σ = 10, ρ = 28, and β =
8

3
. This visualization can help give an idea of the

kinds of complicated structures chaotic solutions may yield. This particular solution

seems to resemble the wings of a butterfly, and it is how Edward Lorenz came up

with the moniker of the “Butterfly Effect” to describe the sensitive dependence to

initial conditions inherent to chaos.

Looking at Figure 2.7, it may seem that trajectories cross themselves in phase

space. However, this is not the case, as guaranteed by the Existence and Uniqueness

Theorems. It may just appear that way due to the limited resolution of computer

graphics.

As we have now established the language of dynamical systems, and given an in-

troduction to the concept of chaos, we can now move on to establishing mathematical
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Figure 2.7: Phase plot of a chaotic solution of the Lorenz system.

tools that can be used to analyze chaos on a deeper level in the next chapter.
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Chapter 3

Chaotic analysis preliminaries

Chaos, yet harmony.

The Jedi Code

With chaotic solutions having previously been found in one-zone models, it

becomes pertinent to understand precisely what chaos is and how to analyze it[26, 37].

While chaos is often mistakenly associated with randomness, it is in fact explicitly

non-random. It may just appear that way since chaotic dynamics are often very

complex, and their analysis requires the use of mathematical techniques that may be

unfamiliar.

This chapter is dedicated to developing the mathematical toolbox to analyze

strange chaotic attractors. Once again, a more expansive discussion may be found in

select textbooks [17, 22, 27].

3.1 Conditions for chaos

While there is some disagreement about exact definitions of what precisely deter-

mines whether or not a system is chaotic, there are some generally accepted features.

For the purposes of this work, we base our working assumptions of what chaos is on

Strogatz (2018) [40].

The definition of deterministic chaos presented by Strogatz has three primary con-

ditions. Firstly, chaotic behavior is aperiodic. This means that there is the presence

of trajectories which do not repeat, or settle down to some particular value [40]. For

example, a limit cycle trajectory could not be considered chaotic, as this is periodic

by definition. This is not to say that a chaotic dynamical system cannot have some
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Figure 3.1: Diagram showing the growth of the separation η(t) of two trajectories.

trajectories that settle down to a particular value or limit cycle. It is just that there

must be a significant number of trajectories in phase space that do not exhibit such

regular behavior.

Secondly, the system must be deterministic. This requires that the system is non-

random or not noisy [40]. It also means that given exact precise numbers specifying

parameters and initial conditions, we should be able to predict the precise state of a

trajectory after some time t.

Thirdly, the system must exhibit a sensitive dependence on initial conditions. This

entails that trajectories in phase space starting out with initial conditions very close

to one another, will eventually diverge from one another at an exponential rate [40].

This condition of exponential divergence is usually quantified using the concept

of the Lyapunov exponent Λ. To illustrate this concept, we may imagine two trajec-

tories emanating from initial conditions that are separated from each other by some

minuscule distance η0, as shown in Figure 3.1. After some time t, the magnitude of

the separation η(t) between the two trajectories can be calculated as

∥η(t)∥ ≈ ∥η0∥ eΛt. (3.1)

We can thus solve for the Lyapunov exponent after some time t as

Λ ≈ 1

t
ln

(
∥η(t)∥
∥η0∥

)
. (3.2)

Thus, when Λ > 0, the growth of the separation is exponentially increasing. This

would thus be a requirement for chaos.

It is important to note that for a given d-dimensional dynamical system, we would

actually need to measure d Lyapunov exponents. For example, for three-dimensional

systems, we would in fact have 3 Lyapunov exponents. However, for chaos, we only
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require that the largest of the Lyapunov exponents be positive. This is what is called

the maximal Lyapunov exponent.

3.2 Defining strange chaotic attractors

Once again, there is no universal agreement on what precisely defines a strange

chaotic attractor. We will once more refer to Strogatz (2018) for the definitions we

will be considering [40].

This definition is made up of three prongs. For convenience, let us consider a

strange attractor S. Firstly, S is invariant, meaning that trajectories that begin in S

cannot leave it [40].

Secondly, S attracts an open set I of initial conditions sufficiently near it. This

means that trajectories emanating from within I will tend to S as t → ∞ [40].

Lastly, S must exhibit the sensitive dependence on initial conditions outlined

earlier [40]. This means that there must be trajectories within S that have positive

maximal Lyapunov exponents.

Other features of strange chaotic attractors spring from these conditions. Attrac-

tors are called strange when they exhibit fractal structure or fractional dimensions

[42]. For example, while a fixed point may be an attractor, it has zero dimension. A

strange attractor would have a non-integer dimension.

This fractal structure can be difficult to visualize. This is why trajectories in

phase space for chaotic systems such as the Lorenz system we showed in Figure 2.7

can look very complicated. This is because the underlying strange attractor governing

the dynamics exhibits such a fractal structure. Thus, it is through other means of

visualizations, such as the Lorenz Maps that we will discuss in the next section, that

we are able to probe some features of the strange attractors.

It is also interesting to note that it is possible to have a strange attractor that is not

chaotic. These are called strange non-chaotic attractors (SNAs). These are strange

attractors which do not exhibit a sensitive dependence on initial conditions, and thus

do not have a positive maximal Lyapunov exponent [42]. They do however exhibit the

characteristic fractal structures that make them strange. Some strange non-chaotic

attractors have in fact been observed in the study of variable stars, specifically in

some RR Lyrae stars [20].

However, SNAs are often associated with non-autonomous dynamical systems.
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Figure 3.2: The Lorenz Map of the Lorenz system for σ = 10, ρ = 28, β =
8
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.

Plotted using the Mathematica® code of Binous et al. (2013) [4].

The dynamical systems we will be dealing with in this work are exclusively au-

tonomous systems. Thus, for the rest of this work, we may refer to strange chaotic

attractors as simply strange attractors without loss of ambiguity.

3.3 Lorenz Maps

Considering the intractability of directly analyzing the structure of strange at-

tractors by looking at the full three-dimensional chaotic phase plot such as in Figure

2.7, Lorenz sought to find a way to cut down on the complexity and find a simpler

way to study the features of a strange attractor [21]. He presented what are now

called Lorenz Maps, or first return maps, in which the successive maxima of a single

state variable are plotted in two-dimensions.

In the case of one of the chaotic solutions of the Lorenz system, the successive

maxima, zn vs zn+1, are plotted in Figure 3.2 using the code from Binous et al. (2013)

[4]. This forms what is called a tent map, as the plot looks like a tent [40].

Lorenz posited that succeeding points would fall along this curve. While the curve

does not represent a well-defined function, as there is some thickness to the curve, it

is still a useful way to study the strange attractor [40]. This is because by use of a

Lorenz Map we are able to characterize patterns in the successive maxima of state

variables that are a lot less complicated than the full phase plots.

Another use of Lorenz Maps is that they present an easy means of telling the
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Figure 3.3: Lorenz Maps of a state variable x showing period-1 and period-2 solu-
tions.

periodicity of solutions. Considering that when looking at a time-series of a state

variable, we tell the periodicity by counting the number of maxima per cycle, a

Lorenz Map is able to present this information in a more intuitive way. We can tell

the periodicity of a solution by counting the number of points present on the plot,

after of course considering a long enough time interval. In Figure 3.3, we show period-

1 and period-2 solutions which are shown by having 1 point and 2 points on their

respective Lorenz Maps.

For this work, we adapt the Mathematica® code of Binous (2012) for rendering

the Lorenz Maps we will make use of in our analysis later [3].

3.4 Time-delay embedding for attractor reconstruc-

tion

It is pertinent to consider that while models of physical phenomena represented

by dynamical systems may have multiple state variables {xd}, it is often difficult or

impossible to get information about all of these state variables in real life experiments

or observations of nature. Thus, this opens up the problem of how to properly compare

data of perhaps only a single observable state variable to a model with multiple state

variables. This is especially difficult for chaotic systems, which are expected to show

a sensitive dependence on initial conditions.

In the previous subsection, we presented a means of visualizing some geometric
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features of the strange attractors of dynamical system via the use of Lorenz Maps

which plot successive maxima. While this is of course a useful tool, we are unable to

reconstruct the dynamics of the dynamical system from these maps alone. This is of

course because the behavior of the time-series between each maxima are lost in these

forms of plots.

This leads us to turn to the method of time-delay embeddings to reconstruct the

dynamics of systems with strange attractors using information from only a single

state variable. To do this, we make use of what are called delay coordinates [17]. In

this coordinate system, we state the time-delay vectors, which replace the vectors x

of all the state variables in Equation 2.5, as

st =
(
st, st+τ , st+2τ , . . . , st+(de−1)τ

)
. (3.3)

This is equivalent to collecting information about a single state variable s for de time

intervals of length τ 1 [40]. Thus, we restate this delay-vector in a more intuitive form

as

st = (s(t), s(t+ τ), . . . , s(t+ (de − 1)τ)) . (3.4)

Here, τ is referred to as the delay time. There is no one size fits all method for

finding an appropriate optimal value for the delay time, which we denote τopt. This is

because it often depends on what the particular goal of the attractor reconstruction is.

In this work, our purpose is to reconstruct the strange attractor of a one-zone model

using a single state variable, such as the stellar radius r or radial velocity v, for

potential comparison in the future with observational data of stellar radii and radial

velocities. For this goal then, the optimization of the delay time τ can be done by

minimizing the average mutual information between components of the delay vector

st. The details of this will be discussed in the next subsection.

On the other hand, de is an integer called the embedding dimension. We note that

since de determines the number of intervals we collect information about s, it also

determines the dimension of our new delay coordinate system. Thus, we can consider

the embedding dimension de as the number of dimensions our delay vectors need to

be to reconstruct the dynamics of the original dynamical system [36]. By extension,

this sets the number of dimensions our plots of the time-delay reconstruction will

1Note that the delay time τ we use here is different from the τ , representing the dimensionful
time, we use in our derivation of the one-zone models in Chapter 4. We will never use these two
versions of τ in the same context, so there should be no need for confusion to arise.
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have. The fact that de is an integer may lead to some confusion, as we previously

mentioned that strange attractors are characterzied by fractional dimensions. The

embedding dimension is a measure describing the dynamics of the system, while the

fractional dimensions of a strange attractor such as the box-counting dimension or

correlation dimension are specific geometric quantities. We will not be dealing with

these particular geometric dimensions in this work.

The validity of phase space reconstruction via time-delay embeddings is ensured

by Takens’ Theorem [41]. This states that for a deterministic system, by selecting a

sufficient delay time τopt and embedding dimension de, we may construct a set of delay

coordinates st that have a smooth invertible map to the coordinate system made up

of the original state variables [36]. This effectively means that the delay coordinates

contain the same topological information about the dynamics of the system as the

original coordinates made up of the state variables do. It also means that information

about the strange attractors for chaotic systems, such as Lyapunov exponents, can

just as well be calculated using our delay reconstruction as from the original state

variables.

For this work, we perform our time-delay embedding reconstruction using the

publicly available Mathematica® package of Ruskeepää (2014) [36].

3.5 Finding an optimal delay time τopt

There is some arbitrariness in the best choice for the delay time τopt. However, as

previously stated, the method of minimizing the average mutual information between

delay vector components is best suited for our purposes.

Essentially, when we are trying to reconstruct the dynamics of a set of state

variables {xd} using a delay vector st, we wish to ensure that each component of st

contains as much unique information as possible. Thus, each component of st must

be sufficiently uncorrelated from its fellow components, in order to maximize their

usefulness. If we choose a τopt that is too small, the different components of st will

be so temporally close to one another, that we are unable to maximize the amount

of unique information carried by each component. However, we also cannot pick τopt

to be too large, as the components may end up being too unrelated to one another,

and we will be unable to meaningfully reconstruct the dynamics of the system [36].

Therefore, the process of minimizing the average mutual information for the purposes
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of time-delay reconstruction involves solving for the first minima of average mutual

information between the components of st.

In order to understand this, we must first establish how we calculate the mutual

information between functions. For random variables X of x and Y of y, the mutual

information, measured in bits, is given by

I(X;Y ) = log2

(
PX,Y (x, y)

PX(x)PY (y)

)
, (3.5)

where the functions P are the probability densities.

If X and Y are independent, the joint probability density is just

PX,Y (x, y) = PX(x)PY (y). (3.6)

Thus, the mutual information is thus zero, as

I(X;Y ) = log2

(
PX(x)PY (y)

PX(x)PY (y)

)
= 0. (3.7)

To calculate the average mutual information between X and Y then, we have the

formula

IX,Y =
∑
x

∑
y

PX,Y (x, y) log2

(
PX,Y (x, y)

PX(x)PY (y)

)
. (3.8)

For the purposes of time-delay reconstruction, we collect data points from the

time-series of a single state variable s, We then separate the information stored in

these data points into different bins of specified width, as in a histogram. From this

time-series data, we construct delay vector components st and st+τ . For these two

components then, we calculate the average mutual information as

I(τ) =
∑
i

∑
j

pi,j(τ) log2

(
pi,j(τ)

pipj

)
, (3.9)

where pi is the probability that the component is in the i-th bin of a histogram. This

is given by the relative frequency that a data point is found in the i-th bin [36].

In order to minimize the average mutual information then, the value of τ is in-

creased until we get the first minima of Equation 3.9. This value of τ is then taken

to be our optimal delay time τopt. While τopt can be any positive real number, it is

often taken to be an integer for convenience. It is often even taken to be a range of

values, instead of a single optimal value. This reflects the fact expressed earlier that

the choice of an optimal τ is somewhat arbitrary.
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3.6 Choice of embedding dimension de

The choice of the value of the embedding dimension de is paramount to the

process of time-delay reconstruction as it determines the number of delay coordinates

necessary. We can of course consider simply choosing the largest value for de possible,

as that would almost certainly ensure that we have enough information stored in the

different coordinates. However, we should note that analysis and visualization of a

system becomes increasingly difficult as we increase the number of dimensions. For

example, if three dimensions is sufficient, using de = 4 would definitely also work, but

this choice would just complicate things unnecessarily.

The question now arises as to how to determine an appropriate minimal value of

de. A well-established method for this is the method of false nearest neighbors [18].

The principle behind this method is ensuring that there is no loss of information about

the true distances between points from having too low of an embedding dimension.

This can be better illustrated with an example. We can imagine two points on a

three-dimensional helix that are on different rungs of the structure. If we represent

this helix in two dimensions, these two points may appear to be very close to one

another, since we lose information about the vertical component of their positions.

Thus, this pair of points would be false nearest neighbors, as the projection in two

dimensions leads us to wrongly classify them as being close together.

The method of false nearest neighbors then consists of increasing the value of the

embedding dimension de until there are no false nearest neighbors left. Since at this

point, we would have already found our optimal delay time τopt, this is the value of τ

we use here.

We consider the representation of single point x in de dimensions as

x =
(
xt, xt+τopt , . . . , xt+(de−1)τopt

)
, (3.10)

and in de + 1 dimensions as

x =
(
xt, xt+τopt , . . . , xt+(de−1)τopt , xt+deτopt

)
. (3.11)

For some points x and y which are nearest neighbors in de dimensions, we calculate

their Euclidean distance from one another as

Rde =

√√√√de−1∑
i=0

(
xt+iτopt − yt+iτopt

)2
. (3.12)

28



If we go a dimension higher, in de + 1 dimensions the Euclidean distance would then

be given by

Rde+1 =

√√√√de−1∑
i=0

[(
xt+iτopt − yt+iτopt

)2]
+
(
xt+deτopt − yt+deτopt

)2
. (3.13)

Thus, if we wish to minimize the number of false nearest neighbors, we consider the

distance increase between two nearest neighbors when we move up from de dimensions

to de +1 dimensions. If this distance increase is large in comparison to Rde , then the

two points were false nearest neighbors. We thus need to establish a threshold criteria

for determining whether or not we consider this distance increase large enough. This

is given by √(
xt+τopt − yt+τopt

)2
R2

de

> T1, (3.14)

where T1 is some threshold value. In the literature, T1 is usually taken to be T1 = 15

[36]. Thus, this is the threshold value we consider here. For some data sets which

require high embedding dimensions, a point may be wrongly considered to be a true

nearest neighbor. Thus, an additional requirement involving the standard deviation

σ is used. This is stated as ∣∣xt+τopt − yt+τopt

∣∣
σ

> T2, (3.15)

where T2 is another threshold value conventionally taken to be T2 = 2 [36]. Thus, the

lowest value of de wherein by these criteria there are zero false nearest neighbors, is

the optimal value for the embedding dimension.

After the appropriate values of τopt and de are found, we then proceed to plotting

the reconstructed phase space using our delay coordinates. This can then be compared

to the phase plots rendered from the set of original state variables, so that we can

qualitatively assess if they show similarities. It is also possible that the optimal values

of the delay time τopt and the embedding dimension de show some dependence on the

state variable chosen for the reconstruction [9, 31], and thus it may be of interest to

find if such dependence applies to our systems.
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Chapter 4

Stellar pulsation in the one-zone
models

All models are wrong,
but some are useful.

George E.P. Box

Before we begin to discuss the process of stellar pulsation, it is important to

first establish the case wherein a star is in hydrostatic equilibrium. This means that

the surface of the star is unmoving, as the pressure pushing outward exactly balances

the gravitational force pulling inward.

We recall from the first chapter that Newton’s 2nd Law for a star described by a

one-zone model is given by

m
d2R

dτ 2
= −GMm

R2
+ 4πR2P. (4.1)

To get the acceleration of the spherical shell, we simply divide both sides by the mass

of the shell m to get
d2R

dτ 2
= −GM

R2
+

4πR2P

m
. (4.2)

In hydrostatic equilibrium, the acceleration would be zero, so this yields

0 = −GM

R2
⋆

+
4πR2

⋆P⋆

m
, (4.3)

GM

R2
⋆

=
4πR2

⋆P⋆

m
, (4.4)

and the condition
4π

m
=

GM

P⋆R4
⋆

, (4.5)

where we use the ⋆ subscript to denote equilibrium values.
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Now that we have established the hydrostatic equilibrium case of a star, we now

consider a case wherein some process, such as a random variation in pressure, leads

to a small perturbation away from equilibrium. For non-variable stars, such as many

main sequence stars like the Sun, these small perturbations are often not spherically-

symmetric and die down relatively quickly 1. Thus, they roughly maintain hydrostatic

equilibrium over long timescales.

However, for stellar pulsators this is not the case. These small variations from

equilibrium often end up growing into sustained oscillations [24]. In the first two

sections of this chapter, we discuss two of the physical mechanisms within AGB and

post-AGB stars that contribute to these pulsations in long-period variables: the κ-

mechanism and non-adiabaticity.

4.1 The κ-mechanism

The opacity of layers in a star is governed by Kramers’ Law, which relates the

density ρ and temperature T to the opacity κ as

κ = κ0ρ
nT−s, (4.6)

where κ0 is some proportionality constant, and n and s are the opacity exponents.

Stellingwerf (1972) made the choice of opacity exponents n = 1 and s = 3, for use in

their one-zone model [38]. For these constant exponents then, we get

κ = κ0ρT
−3. (4.7)

In proposing a means by which opacity variations may drive stellar pulsation,

Sir Arthur Eddington proposed a “valve mechanism” [10]. In this process, during

phases of contraction, some layers of the star become more opaque due to the increase

in density. This then traps energy beneath the layer, which in turn increases the

pressure. This pressure pushing outwards then leads to an expansion [8]. As the star

continues to expand and the pressure decreases, the gravitational force in Equation

4.1 once again dominates, leading to a contraction once more. Thus, we would have

a series of alternating expansions and contractions of the stellar surface.

However, it should be considered that we would also expect a contraction trapping

energy to increase the temperature. This then poses a problem as the form of Equation

1Solar-like stars also exhibit oscillations, but these are often more localized and are driven by
different processes from those in LPVs.
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4.7 shows a higher sensitivity on the temperature T than on the density ρ. Since the

exponent of T is negative, this would hypothetically bring down the overall opacity

of the gases during contraction phases instead of increasing it [8]. Thus, this would

not allow for the driving of the pulsation.

The means for subverting this dominance of the temperature rise in contrac-

tion was later found to be attributable to the presence of partial ionization zones

in Cepheids, long-period variables, and some other stellar pulsators. In these zones,

specifically HeII partial ionization zones, the energy dammed up during expansion

ends up contributing to the ionization of the gases. This leads to there being less

energy left to contribute to a rise in temperature. Thus, the increase in the density

dominates during these contraction phases, and the opacity does indeed rise. Fur-

thermore, when the build up of pressure later leads to expansion, the energy stored

in the ionized gases gets released. This then further excites the said expansion [11].

This process by which changes in the opacity drive oscillations is known as the κ-

mechanism. It has also been considered that the choice of constant opacity exponents

n and s in Equation 4.6 may be too crude an approximation for LPVs. We will

later explore a case wherein the opacity exponents are dynamical quantities and also

temporally evolve.

4.2 Non-adiabaticity

Non-adiabaticity is a measure of the ability of fluid components within the star to

transfer heat to one another. A useful way this is quantified is by comparing timescale

of fluid movement within the star to the timescale of heat transfer. This makes sense

as if the time it takes for heat to transfer between components is comparable in

magnitude to the time it takes for fluid components to move up in the star, we would

expect non-adiabatic effects to be more prominent.

We can imagine there to be some average timescale for fluid components to move

up in the star, which we refer to as the dynamical timescale τdyn. The speed of this

movement is governed by the speed of sound cs within the star. We can therefore

write the dynamical timescale as

τdyn =
∆R

cs
, (4.8)

where ∆R denotes the radial extension of the region of the star being considered.
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The thermal timescale τthm on the other hand measures the average amount of

time it takes for fluid components to transfer heat between one another. This is given

by

τthm = 4πR2

(
ρ cV T

LR

)
∆R, (4.9)

where cV is the specific heat capacity at constant volume, and LR is the luminosity

at a given radius R.

This now allows us to define our dimensionless measure of non-adiabaticity as the

ratio between the dynamical and thermal timescales

ξ =
τdyn
τthm

. (4.10)

This yields for the whole star in the one-zone model

ξ =
L⋆

ω⋆cVmT⋆

, (4.11)

where we define the characteristic frequency of the star at equilibrium as

ω⋆ ≡

√
GM

R3
⋆

. (4.12)

We can think of the study of stellar pulsation as the attempt to understand the re-

lationship between the energy processes within the star and the mechanical movement

of the stellar surface. Thus, we can consider a star to be a coupled thermo-mechanical

oscillator, where the non-adiabaticity parameter ξ is our coupling constant [25].

For long-period variable stars, the strength of non-adiabaticity is relatively low

but non-zero [26, 37, 38]. This basically means that for such stars the response time

for mechanical processes is much faster than its thermodynamic response time. In

this study then, we consider values for the non-adiabaticity between

0 < ξ ≤ 0.2. (4.13)

The upper boundary of ξ = 0.2 is chosen in order to allow for comparison to the

values of ξ examined by Saitou et al. (1989) and Munteanu (2003) [26, 37]. It may

be possible for some long-period variable stars to be described by values of ξ slightly

higher than this, but we restrict our probes to the range of values for ξ already

established in the literature.

In contrast to this, values for the strength of the non-adiabaticity of about ξ ≈
1 correspond to other stars within the instability strip of the Hertzsprung-Russell
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Figure 4.1: Diagram of a star using the one-zone model. (Not to scale.)

diagram, such as classical Cepheids. For such stars, the mechanical and thermal

timescales are expected to be comparable, so this makes sense [38]. However, such

stars are not the focus of this work.

4.3 Motivation and history of one-zone models

A fundamental assumption behind one-zone models of stellar pulsation is that

since these stars being modeled are rather large, it is possible to approximate the

nuclear burning regions and the upper regions as two discrete masses. This is because

the differences in density between the two regions are so pronounced that we can

consider them as essentially decoupled from one another.

In Figure 4.1, we present the diagram of a star using the one-zone model formalism

of Munteanu (2003) [24], which is what we will use for this work. Here, we have a

static stellar “core” with constant radius Rc, which is made up of stellar massM . This

is surrounded by our spherical shell, of radial extension Rm and mass m, representing

the surface or “mantle” of the star. Thus, we are able to treat the star in the one-zone

model as two discrete masses M and m.

One-zone models were first put forward by Baker (1966), in order to understand

some of the processes which may lead to the decrease or increase in the amplitudes

of initial oscillations in Cepheid type variables. This was presented in the form

of four linear differential equations describing a spherically-symmetric star, whose

mode of energy transport was radiation pressure [2]. Thus, this only considered
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radial oscillations, and did not show take into account any angular dependence of

oscillations.

Baker’s model for Cepheid variability was expanded upon by Rudd and Rosenberg

(1970), wherein they now considered nonlinear differential equations. One feature

of their equations of motion was that they had two different equations specifying

the change of the radial velocity. One described contraction phases, while another

described expansion phases [35].

Drawing from Rudd and Rosenberg (1970), Stellingwerf (1972) adapted the equa-

tions of motion such that there was only one equation of motion for the radial velocity,

instead of the two distinct ones for contracting and expansionary phases. The opac-

ity in this model was considered to have the constant opacity exponents n = 1 and

s = 3. This work also considered a parametric study of variation in the strength of

non-adiabaticity ξ, which later allowed for the extension of the one-zone model to

represent other variable stars aside from Cepheids [38].

Saitou et al. (1989) modified the Stellingwerf (1972) model for the case of non-

constant opacity coefficients. This allowed for one-zone models to be used to describe

long-period variables, instead of just Cepheids. Using a dynamical systems approach,

they explored a period-doubling route to chaos from variation in a parameter a 2 con-

trolling the strength of the κ-mechanism. Using radial velocity Lorenz Maps, they

were able to show some similarity in the patterns of these maps to that of obser-

vational luminosity Lorenz Maps of some RV Tauri and Semiregular variables [37].

Another route to chaos was found in this model by Munteanu et al. (2003), but this

time it was via variation in the non-adiabacity parameter ξ [26]. The phenomena of

period-doubling from variation in the parameters a and ξ controlling two very different

physical mechanisms in the model, the κ-mechanism and the non-adiabaticity respec-

tively, is of much interest. This is because it may entail that long-period variables

have multiple routes to achieve the irregular and even chaotic oscillations associated

with them.

The one-zone models discussed so far have only considered radial oscillations via

radiation pressure as the means of energy transport. The models we will be probing

in this work will likewise be limited to spherically-symmetric pulsation and radiative

energy transport. For one-zone models involving non-radial oscillations, we advise

2This parameter a is defined later in our derivation, specifically in Equation 4.59.
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the reader to refer to Zahn (1968) [44]. Analysis involving time-dependent convection

as an additional mode of energy transport can be found in Moore and Spiegel (1966),

Stellingwerf (1986), and Icke et al. (1992)[14, 23, 39].

4.4 Derivation of the one-zone models

We may now begin deriving the equations of motion for the one-zone models we

will be considering. We seek three final equations of motion in the form of ordinary

differential equations for the radius, radial velocity, and pressure.

We focus our work on two one-zone models in particular. The first model is

based off Stellingwerf (1972), wherein the opacity exponents in Kramers’ Law are the

constants shown in Equation 4.7 [38]. The second case we consider is one in which

the opacity coefficients are dynamical quantities that are functions of the radius and

pressure, as forwarded by Saitou et al. (1989) and Munteanu et al. (2003) [26, 37].

For convenience, we will just refer to these as the Stellingwerf and Munteanu models

respectively. While there are other formulations of one-zone models present in the

literature, we specifically selected these two for analysis due to the similarity in the

forms of the differential equations making up their respective dynamical systems.

This allows for a much more straightforward comparison of the effects of having

constant opacity coefficients to a case wherein the opacity exponents dynamically

evolve. These models have furthermore already had some successes in replicating

some observational behaviors of variable stars, and thus prove ripe for further study

[37, 38].

In order to ease our comparison of the dynamics between these two models, we

have adopted a consistent formalism for the variables and parameters to be used.

The differences in the opacity exponents between the two models will only become

relevant in the final equations of motion. This means that the derivation we present

here is consistent with both models to be considered.

We recall that the spherical shell is what exhibits oscillations about the equilibrium

radius R⋆, so we restate Euler’s Equation in Equation 4.1 as

m
d2Rm

dτ 2
= −GMm

R2
m

+ 4πR2
mPm. (4.14)

We consider a stellar energy equation representing the processes outside the core.

Since we assume that all the nuclear processes occur within the sphere defined by
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Rc, we do not include a nuclear energy term. Instead, we consider that the energy

from the nuclear production within the core is already being transmitted via radiation

pressure and fluid movement due to density changes. This then gives us the energy

equation

cV
∂T

∂τ
=

(
P

ρ2

)
∂ρ

∂τ
− ∂L

∂MRm

. (4.15)

Here, cV is our specific heat capacity at constant volume. The partial differential

∂MRm represents the mass differential across the radius Rm [37]. For our case, this

is just the shell mass m, so we rewrite this as

cV
∂T

∂τ
=

(
P

ρ2

)
∂ρ

∂τ
− ∂L

∂m
. (4.16)

The Lagrangian luminosity derivative was approximated in Baker (1966) as simply

∂L

∂m
=

(
L− Lc

2

)
1

m
, (4.17)

where L is the luminosity coming out of the shell, and Lc is the luminosity coming

out of the core [2]. However, Stellingwerf (1972) found that this factor of
1

2
has little

effect, so we follow their lead and drop it [38]. We also consider that the luminosity

coming out of the core Lc is equivalent to the equilibrium luminosity L⋆. Therefore,

our energy equation becomes

cV
∂T

∂τ
=

(
P

ρ2

)
∂ρ

∂τ
−
(
L− L⋆

m

)
. (4.18)

Considering a diffusion approximation, the luminosity is given by

L = −16πR2σ

3κρ

∂T 4

∂R
, (4.19)

where σ is the Stefan-Boltzmann constant. We further approximate the fourth deriva-

tive of T with respect to R as simply

∂T 4

∂R
= −T 4

R
. (4.20)

Thus, our luminosity equation simplifies to

L =
16πRσT 4

3κρ
. (4.21)

It is helpful to express our final equations of motion in a dimensionless form, so

we define the dimensionless variables for the radius and pressure as

r ≡ Rm

R⋆

, (4.22)
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and

p ≡ Pm

P⋆

. (4.23)

For convenience, we state the derivative of r with respect to τ as

y ≡ dr

dτ
. (4.24)

We can then write the density as

ρ = ρ⋆r
−3. (4.25)

We further assume that the gases in the star follow the Ideal Gas Law, so we have

the proportionality

PV ∝ T, (4.26)

which allows us to state the temperature as

T = T⋆pr
3. (4.27)

Differentiating T with respect to τ yields

∂T

∂τ
= T⋆

(
3r2yp+ r3

dp

dτ

)
. (4.28)

We rearrange this to get the derivative of the dimensionless pressure p with respect

to τ as
dp

dτ
=

r−3

T⋆

∂T

∂τ
− 3r−1yp. (4.29)

We now have to solve for
∂T

∂τ
from our energy equation. We first deal with the

term including the derivative of ρ. Using Equation 4.25, we get

∂ρ

∂τ
= −3ρ⋆r

−4y, (4.30)(
P

ρ2

)
∂ρ

∂τ
= −3

P⋆

ρ⋆
r2yp. (4.31)

We now proceed to the luminosity term. As discussed previously, our opacity κ is

taken to follow Kramers’ Law of the form of Equation 4.6. When we plug this into

Equation 4.21, and use our dimensionless radius and pressure variables, we get

L =
16πσ

3

R⋆T
s+4
⋆

κ0ρ
n+1
⋆

r3n+3s+16ps+4, (4.32)
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for the luminosity out of the shell, and

L⋆ =
16πσ

3

R⋆T
s+4
⋆

κ0ρ
n+1
⋆

, (4.33)

for the equilibrium luminosity. Subtracting these two gives us

L− L⋆ =
16πσ

3

R⋆T
s+4
⋆

κ0ρ
n+1
⋆

r3n+3s+16ps+4 − 16πσ

3

R⋆T
s+4
⋆

κ0ρ
n+1
⋆

. (4.34)

For convenience, we introduce the terms

β ≡ 3n+ 3s+ 16, (4.35)

and

δ ≡ s+ 4. (4.36)

This allows us to factor the luminosity difference nicely as

L− L⋆ = L⋆

[
rβpδ − 1

]
. (4.37)

We can now plug in Equations 4.31 and 4.37 back into our energy equation, which

yields

cV
∂T

∂τ
= −3

P⋆

ρ⋆
r2yp− L⋆

m

[
rβpδ − 1

]
. (4.38)

Dividing both sides by cV T⋆r
3 gives

r−3 1

T⋆

∂T

∂τ
= −3

P⋆

cV ρ⋆T⋆

r−1y − L⋆

cVmT⋆

r−3
[
rβpδ − 1

]
. (4.39)

The adiabatic coefficient is defined as

Γ1 = 1 +
P⋆

cV ρ⋆T⋆

. (4.40)

Plugging this in, and substituting Equation 4.39 into Equation 4.29, yields

dp

dτ
= −3Γ1r

−1yp− L⋆

cVmT⋆

r−3
[
rβpδ − 1

]
. (4.41)

Since we seek to fully nondimensionalize our equations of motion, we need to

make the time dimensionless as well. To accomplish this, we first consider that the

characteristic frequency of the stellar mantle as being given by

ωm ≡

√
GM

R3
m

. (4.42)
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However, since we assume that the stellar surface oscillates near the equilibrium

configuration, we can approximate it as constant

ωm ≈ ω⋆. (4.43)

We now seek to get an equation for the derivative of y with respect to τ . We note

that

dy = d2r = R⋆d
2Rm. (4.44)

Thus, from the Euler Equation in Equation 4.14 we get

dy

dτ
= −GM

R3
⋆

r−2 +
4π

m
Pm

R2
m

R⋆

, (4.45)

Using the equilibrium condition from Equation 4.5, we can restate this as

dy

dτ
= −GM

R3
⋆

r−2 +
GM

R3
⋆

pr2, (4.46)

dy

dτ
= ω2

m

[
pr2 − r−2

]
. (4.47)

To make this fully dimensionless then, we define the dimensionless time as

t ≡ ωmτ. (4.48)

Evaluating the differentials yields

dt = ωmdτ, (4.49)

and

dt2 = ω2
mdτ

2. (4.50)

We further define the dimensionless radial velocity as

dr

dt
= v. (4.51)

Thus, we have
dv

dt
=

1

ω2
m

dy

dτ
, (4.52)

and
dp

dt
=

1

ωm

dp

dτ
. (4.53)
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Using dot notation to denote a derivative with respect to t, we can then finally

write our three equations of motion as

ṙ = v

v̇ = pr2 − r−2

ṗ = −3Γ1r
−1vp− ξr−3

(
rβpδ − 1

)
,

(4.54)

where ξ is the dimensionless parameter controlling the amount of non-adiabaticity de-

fined earlier, and the adiabatic coefficient Γ1 is taken to be
5

3
for an ideal monoatomic

gas. These equations of motion make up the third order dynamical system we will be

analyzing in this work.

The difference between the Stellingwerf and Munteanu models is ultimately found

in the specification of the opacity exponents n and s making up β and δ. We now set

out to explore this difference between the two models in the succeeding sections.

4.5 The Stellingwerf Model

The model of Stellingwerf (1972) was made primarily as a nonlinear model of

Cepheid variation. However, some of the low values of the non-adiabaticity parameter

ξ explored prove apt for comparison to long-period variables.

As previously stated, Stellingwerf made the choice of n = 1 and s = 3 as the

constant opacity exponents. This means we have

β = 28, (4.55)

and

δ = 7. (4.56)

Thus, for this case, our equations of motion in Equation 4.54 become

ṙ = v

v̇ = pr2 − r−2

ṗ = −3Γ1r
−1vp− ξr−3

(
r28p7 − 1

)
.

(4.57)

This means that since we have already specified Γ1 =
5

3
, the only parameter that can

be varied here is the strength of non-adiabaticity ξ.

In the original Stellingwerf (1972) paper, the final equations of motion included

a few more other parameters. Specifically, it included parameters that defined the
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thickness of the shell [38]. However, we are only particularly interested in compar-

ing the effects of having the stated constant opacity exponents to the dynamically

evolving opacity exponents in the Munteanu model. The Munteanu model makes

no considerations for the specific thickness of the shell, and so we have re-expressed

Stellingwerf’s final equations of motion to be consistent with this setup.

4.6 The Munteanu Model

The autonomous Munteanu et al. (2003) model is exactly the same as the Saitou

et al. (1989) model, aside from a slight difference in convention as to how the state

variables are defined. Saitou et al. (1989) stated the differential equations specifically

in terms of the growth of the perturbations from equilibrium values of the variables.

For example, the dimensionless radial extension was defined by them as

r = 1 + x, (4.58)

where x is the perturbation of the radius from the conventional equilibrium. And

thus, the differential equation describing variations of the radius was written using
dx

dt
. However, since we find the convention of Munteanu et al. (2003), which refers to

changes in the variables overall instead of just the perturbations, to be more intuitive,

we refer to the model in this work as the Munteanu model [26, 37].

The work of Saitou et al. introduced the time-varying opacity exponents as

β = a
(
r3p− 1.2

)
+ 21.6, (4.59)

and

δ = 3.6r3p
(
r3p− 0.2

)
. (4.60)

This gives the final equations of motion for the Munteanu model as

ṙ = v

v̇ = pr2 − r−2

ṗ = −3Γ1r
−1vp− ξr−3

(
ra(r

3p−1.2)+21.6p3.6r
3p(r3p−0.2) − 1

)
.

(4.61)

Thus, unlike the Stellingwerf model, we have two parameters that may be tuned,

instead of just one. The additional control parameter present in this model is a, which

controls the strength of the κ-mechanism. For long-period variable stars, values for

a are considered to be given by

0 < a < 36. (4.62)
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Values of a greater than 36 have been found to be stable against pulsations, and thus

cannot describe long-period variables [37]. Thus, we do not deal with such values

here.

The form of β and δ in this model are not immediately evident. We can recall

that the κ-mechanism depends upon processes within the partial ionization zones.

Since one-zone models do not include the details of these zones, it is rather difficult

to establish an appropriate form for these exponents. Thus, Saitou et al.(1989) per-

formed a best fit of the results of this one-zone model with an existing multi-layered

hydrodynamic code they had, which included the details of the said ionization zones

[24, 37]. This is what led to this specific form. We can be reassured of the validity

of the form of these exponents, as the results from their one-zone model were able

to replicate some features of the Lorenz Maps of RV Tauri variables and Semiregular

variables.

Now that we have discussed some of the processes of stellar pulsation, along with

having established the two one-zone models that we will be working with, we can now

proceed to a dynamical systems analysis of these two models in the next chapter.
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Chapter 5

Dynamical behavior of the
one-zone models

The fault, dear Brutus, is not in our stars,
But in ourselves, that we are underlings.

William Shakespeare
Julius Caesar

We now proceed to applying the dynamical systems approach to the Stelling-

werf and Munteanu models in Equations 4.57 and 4.61 respectively. In order to better

characterize these systems, we identify the equilibrium solutions of these two models.

This then lets us observe the behavior of the state variables in phase space after small

perturbations away from such equilibrium states.

The characterization of such behavior then allows us to gain some insight into the

possible long-term behavior of pulsations in stars characterized by these two one-zone

models. Additionally, this analysis lets us identify some limitations of the model that

may lead to behavior that would be considered unphysical in real stars.

5.1 The conventional fixed point

We can recall the state of hydrostatic equilibrium outlined in Equation 4.3. From

this, we can find that in dimensionless form the point

(r∗, v∗, p∗) = (1, 0, 1), (5.1)

is a solution that satisfies this equation. It is also easy to verify that this solution

is valid for both the Stellingwerf and Munteanu models, as it is a fixed point of the

dynamical system in Equation 4.54 in general.
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Since this fixed point defines the regular state we expect a star to be in, the small

initial perturbations we apply to the systems occur around this fixed point. Our phase

space analysis of the dynamical systems will thus have initial conditions beginning

very close to, but not at, this fixed point.

In order to highlight the fact that this fixed point has special physical significance,

we will from now on denote it as

H ≡ (1, 0, 1). (5.2)

5.2 Equilibrium solutions of the Stellingwerf model

In order to understand the dynamical behavior of the Stellingwerf model, we

first seek to identify if it has other equilibrium solutions aside from H. In order to

accomplish this, we set the three differential equations in Equation 4.57 to zero as

0 = v

0 = pr2 − r−2

0 = −3Γ1r
−1vp− ξr−3

(
r28p7 − 1

)
.

(5.3)

We find that this is solved by {v = 0∧p = r−4}. This in fact defines a curve in phase

space, which we state parametrically and define as

E ≡ (r, 0, r−4). (5.4)

We note that this solution diverges when r = 0. Since we don’t expect the star to

ever collapse to a point, we can safely confine our curve to r > 0.

It can be seen that the conventional fixed point H in fact lies along this curve,

and thus it is an element of it as

H ∈ E . (5.5)

This means that aside from the conventional hydrostatic equilibrium state, a star

described by the Stellingwerf model in fact has an infinite number of equilibrium

states defined by the one-dimensional curve E . It can be noted that on this curve,

larger stars would have a lower corresponding pressure, which of course makes physical

sense.

In Figure 5.1, we show a section of the equilibrium curve E in the (r, v, p) phase

space. We also show the conventional fixed point H as an element of this curve.
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Figure 5.1: A section of the equilibrium curve E in phase space. The conventional
fixed point H is shown in green.

We note that since E is one-dimensional, the traditional linear fixed point stability

analysis and classification we discussed in Chapter 2 does not hold. This is because

for every fixed point on the curve, we have two fixed points adjacent on either side

of it. We thus must resort to other means to probe the behavior of the dynamical

system near the equilibrium curve.

r = constant surfaces

One way we accomplish this is by taking r = constant slices of the phase space.

This allows us to plot the vector field defined by (v̇, ṗ)on these two-dimensional slices.

Since the process of taking a slice reduces the phase space to two-dimensions,

we only have to consider one fixed point of E per surface. We can thus perform a

traditional two-dimensional linear stability analysis and fixed point characterization

on the reduced phase space of each slice.

We thus define the two-dimensional Jacobian on the r = constant slices as

Jr =


∂v̇

∂v

∂v̇

∂p

∂ṗ

∂v

∂ṗ

∂p


E,r=constant

. (5.6)

This evaluates to

Jr =

(
0 r2

−5r−5 −7ξr

)
. (5.7)

From this, we get the trace as

Tr(Jr) = −7ξr, (5.8)
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and the determinant as

Det(Jr) = 5r−3. (5.9)

We note that since both r and ξ are strictly positive, we find that the trace is

strictly negative

Tr(Jr) < 0. (5.10)

This means that the fixed points of E on each slice are linearly stable.

We next wish to find which sections of E correspond to fixed points which are

spirals or nodes on these slices. To accomplish this, we evaluate the sign of

Tr(Jr)
2 − 4Det(Jr) = 49ξ2r2 − 20r−3. (5.11)

We see that the sign of Equation 5.11 depends upon the values of r and ξ. We can

thus solve for the value of r where this equation changes sign, for a given value of ξ.

We then find that the equation changes sign when

rcrit =

(
20

49

) 1
5

ξ−
2
5 . (5.12)

This means that on r = constant slices below this value, the fixed points on E are

stable spirals. When at or above this value, they are stable nodes. Thus, since all

the r = constant slices have the points of E as linearly stable, we can consider E as

generally linearly stable on such surfaces.

It is important to remember that these specific classifications only work on each

of the two-dimensional slices, and do not classify the points of E in the whole three-

dimensional phase space.

To aid in this analysis, we present vector plots of (v̇, ṗ) on some r = constant

surfaces. This helps us confirm the validity of our linear stability analysis classifica-

tions.

In Figure 5.2, we plot the vector field on the surface r = 1 for ξ = 0.08. This

surface includes the conventional fixed point H. As we can see, the vector field does

appear to be spiralling towards H in a clockwise fashion. This is consistent with the

fact that for ξ = 0.08, 1 < rcrit, so H is indeed a stable spiral on this surface.

We show the borderline case, where we have the first stable node for ξ = 0.08 on

the surface rcrit ≈ 2.29578 in Figure 5.3. We see that this seems like a borderline

case between a spiral and a node. This is evident as we see some trajectories appear

to somewhat spiral towards the fixed point. However, there also seems to also be
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Figure 5.2: Vector field (v̇, ṗ) on the surface r = 1, for ξ = 0.08. The stable spiral
H is shown in green.

Figure 5.3: Vector field (v̇, ṗ) on the surface r ≈ 2.29578, for ξ = 0.08. The
borderline stable node fixed point of E on this surface is shown in blue.
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Figure 5.4: Vector field (v̇, ṗ) on the surface r ≈ 2.34578, for ξ = 0.08. The stable
node fixed point of E on this surface is shown in blue.

the development of a preferred diagonal eigendirection pointing towards the fixed

point. Thus, while we do classify this as a stable node, the fact that it is a borderline

case explains why it seems to also show some spiral-like behavior. As Equation

5.11 gets more and more positive, we expect the node-like behavior to become more

pronounced.

A case of a stable node, wherein Equation 5.11, is positive, on the surface r ≈
2.34578 for ξ = 0.08 can be seen in Figure 5.4, We can see that the spiral behavior

is no longer evident here, in contrast to what we saw for the previous case. We are

now more clearly able to see the diagonal eigendirection pointing towards the stable

node.

p = constant surfaces

We now repeat the same analysis for p = constant slices. This would now allow

us to plot the vector field defined by (ṙ, v̇) on these slices.

We define the two-dimensional Jacobian for these p = constant slices as

Jp =


∂ṙ

∂r

∂ṙ

∂v

∂v̇

∂r

∂v̇

∂v


E,p=constant

. (5.13)

Evaluating this gives us

Jp =

 0 1

4p
3
4 0

 . (5.14)
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Figure 5.5: Vector field (ṙ, v̇) on the surface p = 1, for ξ = 0.08. The saddle point
H is shown in green.

The determinant is then

Det(Jp) = −4p−
3
4 . (5.15)

Since p is also strictly positive p > 0, the determinant is strictly negative

Det(Jp) < 0. (5.16)

This means that on these p = constant slices, the points of E are saddle points. This

means that they may be attracting in some directions, but repelling in others.

We show the surface p = 1 for ξ = 0.08 in Figure 5.5. On this surface, the

conventional fixed point H is a saddle point. We see that the vector field appears

to indeed portray the textbook behavior around a saddle point. We can observe the

presence of a stable eigendirection along one diagonal, and an unstable eigendirection

along another diagonal.

Due to the fact that the points of E on the p = constant surfaces are saddles, we

find that the mostly assured stability on the r = constant slices may more indicative

of the long-term behavior of trajectories in the phase space of this model.

The v = 0 plane

We note that the entirety of E resides on the plane v = 0. This means that we

cannot perform the same analysis as we did on the r = constant and p = constant

slices, wherein we only had one fixed point per slice. Thus, the most we can do is to

plot the vector field near E , and make qualitative assessments of its behavior.

Shown in Figure 5.6 is the vector field of (ṙ, ṗ) around the equilibrium curve E on

the surface v = 0. Also specified in the plot the conventional equilibrium point H.
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Figure 5.6: Vector field (ṙ, ṗ) on the surface v = 0, for ξ = 0.08. A section of E is
shown in blue, and the point H is marked in green.

We can see that all the vectors appear to be pointing away from E . This entails

that along the surface v = 0, E is unstable. This means that we do not expect any

trajectories to approach E along this plane. This means that any approaches to E
would have to be along r = constant surfaces or p = constant surfaces.

Overall assessment of the stability of E
From our results so far, we have shown that the all the r = constant surfaces for

all possible values of ξ have the fixed points on E as either stable spirals or stable

nodes. Since these r = constant surfaces span the entirety of the phase space, we can

conjecture that any trajectories beginning at initial conditions near E , such as from

a small perturbation from equilibrium, will eventually return to E .
It is very important to note however that this return need not be to the same

point on E the initial perturbation may have taken it away from. Within this model,

it is possible for trajectories beginning with initial conditions closest to a point on E ,
say an arbitrary point E1, to eventually settle down to another distinct point on the

curve E2. This can be stated by considering a small perturbation η as

E1 + η → E2. (5.17)

The role of the stability on p = constant is more difficult to assess, as we know that

the points of E are saddle points on these slices. Thus, while there is a stable direction

to points on E along these surfaces, there is also an unstable direction pointing away

from the curve. Thus, while it is possible for trajectories to approach E along these
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stable directions, we are less assured of the overall stability of E from our assessment

of these p = constant surfaces than we are from the r = constant surfaces.

The actual behaviors of trajectories in this model, moving through a phase space

which is three-dimensional, are of course more complicated than can be described

by the vector fields along these two-dimensional sections. The instability on v = 0,

partial stability along p = constant slices, and stability on r = constant slices are

all likely to contribute to the behavior of such trajectories. However, since we have

analytically shown that the slices of r = constant spanning the entire phase space

have fixed points of E as stable, we are strongly led to believe that points starting

near a point on E will eventually end up on E . In the next subsection, we will show

phase plots of trajectories emanating from near H that confirm this expectation.

5.3 Phase space trajectories in the Stellingwerf model

We now plot the phase space trajectories of the dynamical system emanating

from initial conditions close to H. These initial conditions would represent a small

perturbation away from the conventional equilibrium state we would expect our star

to start out from. These phase plots represent behavior in the three-dimensional

phase space, and can show if the dynamical behavior of trajectories is consistent with

the generalized linear stability of points on E we posited in the last subsection. The

specific choice of individual initial conditions was done in a non-systematic fashion.

In Figures 5.7, 5.8, 5.9, and 5.10 we show the trajectories emanating from initial

conditions relatively close to E for ξ = 0.08. In all these cases, we see spiralling

behavior towards other points along the equilibrium curve E .
When we calculate the result of Equation 5.2 for ξ = 0.08, we see that fixed points

on E evaluated on r = constant slices transition from stable spirals to stable nodes

at

rcrit,0.08 ≈ 2.29578. (5.18)

Thus, since none of these trajectories ever reach this critical value, the appearance of

spiral behavior even in the full three-dimensional phase space is consistent with our

characterization of the points of E on the r = constant surfaces. Furthermore, our

assessment of the stability of E is supported by these results. Our tested trajectories

all appear to end on points along E .
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Figure 5.7: Phase plot of the Stellingwerf model for ξ = 0.08, with initial condition
(0.9986, 0, 0.9986) marked in red. The trajectory ends at the point (0.991654, 0,
1.03409) on E shown in blue.

Figure 5.8: Phase plot of the Stellingwerf model for ξ = 0.08, with initial condition
(1.02, 0.1, 0.98) marked in red. The trajectory ends at the point (1.18323, 0, 0.510184)
on E shown in blue.
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Figure 5.9: Phase plot of the Stellingwerf model for ξ = 0.08, with initial condition
(0.97, -0.1, 1.04) marked in red. The trajectory ends at the point (0.865729, 0,
1.78022) on E shown in blue.

Figure 5.10: Phase plot of the Stellingwerf model for ξ = 0.08, with initial condition
(0.9, -0.1, 1.1) marked in red. The trajectory ends at the point (0.668043, 0, 5.02092)
on E shown in blue.

54



Figure 5.11: Phase plot of the Stellingwerf model for ξ = 0.08, with initial con-
dition (1.15, 0.1, 0.8) marked in red. The trajectory ends at the point (3.59087, 0,
0.00601451) on E shown in blue.

We now consider a case wherein the trajectory does indeed cross rcrit. In Figure

5.11, we see behavior that unlike the previous examples does not show much spiralling.

In fact, we note that the trajectory appears to be what we would expect for an

overdamped oscillator. We note that the initial condition chosen for this phase plot

does have a rather large perturbation away from from r = 1, representing a rather

large push of the mantle outwards, along with a positive radial velocity v. This then

leads the trajectory to cross rcrit,0.08 in its approach towards E . This means that past

this value of r, the points of E are now described by stable nodes on the r = constant

slices instead of the stable spirals from the previous cases. This likely explains the

relatively more straightforward shape of the trajectory, which is consistent with nodes.

It is also interesting to point out that the points on E that the trajectories end on

are not necessarily the point on E that the particular initial condition was closest to.

The vector field of the dynamical system does not necessarily require so straightfor-

ward a return.

We also find that some sets of initial conditions may lead to a divergence or clearly

unphysical results. In Figure 5.12, we find that the trajectory emanating from the

initial condition (1.1, 0.1, 1.1) does not appear to settle on E for the duration of
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Figure 5.12: Phase plot of the Stellingwerf model for ξ = 0.08, with initial condition
(1.1, 0.1, 1.1) marked in red. The trajectory appears to diverge to unphysical values
for the radius.

up to t = 1000000 that the numerical integration to generate this was run up to.

It is possible that the chosen initial condition is just too far from E , such that the

linear stability of the curve on r = constant surfaces is not enough to confine this

trajectory. It may also be that we have simply not run the numerical integration for

a large enough t to show the trajectory settling on E . Note that the sharp corner

in the plot of E is simply due to us showing the phase space up to r = 200, which

distorts the shape of the curve in order to fit it into the image.

However, a further analysis of this divergence seems unnecessary as the result so

far is already wildly unphysical. We note that the initial condition with a positive

radial velocity v, and variations in r and p of +10%, may possibly no longer be

considered as small perturbations away from our conventional equilibrium H. Thus,

we may be unlikely to expect ever reaching this point of the phase space anyway for

a real star, especially since pressure generally scales inversely to the radius.

In future work, the identification of a Lyapunov function that applies to the r =

constant curves would be useful. This is a type of function used in dynamical systems

analysis that would allow us to define a boundary for where the evaluated stability

holds [40]. For our case then, this would allow us identify just how far away from E
our initial conditions may be while still ensuring that trajectories settle onto it.
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(a) ξ = 0.02 (b) ξ = 0.2

Figure 5.13: Phase plots of the Stellingwerf model with initial condition (0.9986,
0.1, 0.9986) marked in red, for varying ξ. Both trajectories shown end at the point
(0.991654, 0, 1.03409) on E .

5.4 Variation of ξ in the Stellingwerf model

We now probe the effect of variation of the strength of the non-adiabaticity ξ on

the shape of trajectories in the model. We recall that for long-period variable stars,

we confine our survey to 0 < ξ ≤ 0.2.

We plot two trajectories for with the same initial condition (0.9986, 0.1, 0.9986),

but with different values of ξ in Figure 5.13. We see that the phase plot for the

lower value of ξ = 0.02 appears to show more spiralling than that for ξ = 0.2. It is

interesting to note though that the value of ξ does not affect the final state of the

trajectory, as both cases end up at the point (0.991654, 0, 1.03409) on E . We can

confirm that this is also consistent with our phase plot for the same initial conditions

and ξ = 0.08 in Figure 5.7.

This effect of the variation of ξ makes sense when we consider the effect of varying

ξ on Equation 5.11. We recall that when Tr(Jr)
2 − 4Det(Jr) < 0, the fixed points of

E on our r = constant slices are spirals. Decreasing the value of ξ makes this equation

more negative, and we thus expect trajectories around such points so exhibit stronger

spiral-like behavior.

We further observe that the increase of ξ leads to a longer amount of time for the

trajectories to settle down onto the equilibrium curve E . We can perhaps understand

this effect by considering that since increasing ξ makes the fixed point more node-
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like, there becomes the increasing development of a preferred direction of attraction.

This means that the “strength” of the attraction would generally be weaker in other

directions. This can be observed qualitatively when we compare Figures 5.2 and 5.3.

Thus, the trajectories corresponding to higher values of ξ would indeed take a longer

amount of time to settle onto the fixed point.

5.5 Physical considerations and implications of the

behavior of the Stellingwerf model

We have already identified that the fixed points of E on r = constant surfaces

are stable spirals or stable nodes. It then becomes pertinent to discuss what physical

correspondences account for this transition from stable spirals to stable nodes.

We assess this transition by first looking at the equation for the radial acceleration

v̇, which flows from Euler Equation’s in Equation 4.14, encapsulating Newton’s 2nd

Law. In this equation, we essentially have two competing terms. The first is the

term pr2 corresponding to the pressure pushing outwards. The second term r−2

corresponds to the inward pull of gravity. Since the gravitational term decreases as

an inverse square, as the radius r increases, we expect this term to approach 0. This

means that for high values of r, the pressure term dominates, and we no longer expect

much oscillation in the radial velocity v.

This then accounts for the transition we see at rcrit. For values of the radius r lower

than this, the oscillations in v are still prominent, and this manifests as spiral-like

behavior in phase space. When we now consider values of r past rcrit, the oscillatory

behavior is minimal, and the points of E on the r = constant surfaces are more

node-like. This is akin to the mechanical analogue of the transition from oscillatory

behavior in an underdamped system to a much slower approach to equilibrium in an

overdamped system. This explains why the trajectory, with values of r past rcrit,

shown in the full three-dimensional phase space in Figure 5.11 resembles what we

would expect for an overdamped system.

Now, we turn to the dependence of this transition on the non-adiabaticity ξ. This

can be tackled by assessing the role of ξ in the equation describing the variation in

pressure over time ṗ. As we increase ξ, heat transfer in the star becomes more efficient,

and the magnitude of ṗ is generally higher than if ξ were lower. This then entails that

the pressure term pr2, in the radial acceleration equation v̇, more easily out-competes
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the gravitational term. As expected, this leads to less oscillations in v, which once

again means we see less spiralling. This accounts for the observed dependence of the

behavior of phase space trajectories on ξ, that we showed in Figure 5.13. It thus also

makes sense that the formula we found for rcrit in Equation 5.2 also shows this inverse

dependence on the value of ξ.

However, we consider that when we solve Equation 5.2 for our non-adiabaticity

values of 0 < ξ ≤ 0.2, we find that

1.59131 ≤ rcrit < +∞. (5.19)

Since we are considering long-period variable stars, we note that we do not expect

variations to lead to the radial extension getting anywhere near as large as r =

1.59131, as this would correspond to a growth of almost 60% of the radius. Thus, we

can say that physically realizable phase space trajectories of this system should be

confined to regions wherein the points of E are stable spirals on r = constant surfaces.

This further means that solutions such as that shown in the phase plot in Figure 5.11,

wherein the trajectory crossed rcrit are unlikely to be physically realizable. This is

especially evident when we note that this particular case has a final state wherein

r = 3.59087. We obviously do not expect a star to more than triple its radial extension

due to a small perturbation from H.

Now, for the solutions with more physically realizable values for the radius, such

as in Figures 5.7, 5.8, 5.9, and 5.10, we wish to assess what the behavior of the phase

plots entail. The fact that small perturbations away from equilibrium states on E ,
such as H, still lead trajectories to other parts of E , can be interpreted as the star

“hopping” between equilibrium states. This is after some transient behavior in phase

space, which for our case is mostly spiral-like behavior.

We may then conclude that the small number of transient oscillations that occur

in this model cannot characterize real long-period variable stars. This is because the

oscillations of such long-period variable stars are sustained long-term behaviors, and

so the predictions of this model do not seem physically realizable for such stars.

It is important to note however that the nature and behavior of the perturba-

tions that bring a star out of its equilibrium configurations are not included in the

Stellingwerf model. Thus, it is possible that there is some mechanism that makes

the oscillatory behavior of a star with constant opacity exponents n = 1 and s = 3

last for a more sustained period of time. Perhaps the inclusion of time-dependent
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convective processes in the model will account for this. However, we are as of now

unable to comment on these possibilities.

5.6 Equilibrium solutions and transient behavior

of the Munteanu model

Now that we have completed our analysis of the case of constant opacity exponents

in the Stellingwerf model, we now move on to the analysis of the Munteanu model,

wherein the opacity exponents dynamically evolve.

We similarly begin our analysis by finding equilibrium solutions for the Munteanu

model aside from H. To do this, we set the three differential equations in Equation

4.61 to zero as

0 = v

0 = pr2 − r−2

0 = −3Γ1r
−1vp− ξr−3

(
ra(r

3p−1.2)+21.6p3.6r
3p(r3p−0.2) − 1

)
.

(5.20)

Solving these simultaneously gives us three fixed points. Namely, these are H,

(r∗, v∗, p∗) ≈ (0.68, 0, 4.75), and (r∗, v∗, p∗) ≈ (8.8858, 0, 0.0002) [26]. For conve-

nience, we denote these latter two fixed points as B and C respectively.

The three-dimensional Jacobian matrix would then be

JM =



∂ṙ

∂r

∂ṙ

∂v

∂ṙ

∂p

∂v̇

∂r

∂v̇

∂v

∂v̇

∂p

∂ṗ

∂r

∂ṗ

∂v

∂ṗ

∂p


(r∗,v∗,p∗)

. (5.21)

Due to the complicated exponents in the second term of ṗ, stating this Jacobian in

full is unwieldy, and is unlikely to give much insight. We thus proceed directly to

classifying the fixed points based on the form of the eigenvalues we get from their

corresponding Jacobian matrices. We present the classification of the three fixed

points in Table 5.1. Munteanu et al. (2003) only identified that these fixed points

were unstable, so we have added the specific classification of these fixed points [26].

Given this characterization, we may now proceed to probing the transient behavior

of trajectories near these fixed points. We first note that the fixed point C has
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Fixed Point Form of eigenvalues Classification
H µ1 = 0 ∧ µ2,3 ̸= 0, α1 < 0 & α2,3 > 0 Saddle-Focus
B µ1 = 0 ∧ µ2,3 ̸= 0, α1 > 0 & α2,3 < 0 Saddle-Focus

C µ1 = 0 ∧ µ2,3 ̸= 0, α1,2,3 > 0 Unstable Focus-Node

Table 5.1: Classification of fixed points in the Munteanu model. Here, αj corre-
sponds to the real part of the eigenvalue λj, while µj corresponds to the imaginary
part.

Figure 5.14: Phase plot of the Munteanu model for ξ = 0.08, a = 20, with initial
condition near the fixed point C marked in red.

r ≈ 8.8858, which is clearly unphysical. When we plot a trajectory emanating from

this fixed point in Figure 5.14, we notice that the resulting trajectory diverges to even

higher values of r. This is even more clearly an unphysical result. However, since in

physical analysis we mostly consider initial conditions near H, the presence of this

result does not really take away from the model.

We now proceed to transient behavior of trajectories near the conventional fixed

point H. Shown in Figure 5.15, we see that the trajectory first spirals away from

the initial condition near H. It then continues to spiral around in larger arcs until it

seems to settle down onto a limit cycle. This limit cycle behavior is confirmed when

we plot the long-term behavior for t ∈ (2000, 3000), where for ξ = 0.08, a = 20 we

have a period-1 limit cycle.

We then move on to our last fixed point B. We see in Figure 5.16, that the

trajectory appears to initially be repelled from B. It then appears to spiral around
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(a) Transient: t ∈ (0, 3000) (b) Long-term: t ∈ (2000, 3000)

Figure 5.15: Phase plots of the Munteanu model for ξ = 0.08, a = 20 with initial
conditions near H showing transient and long-term behavior. The initial condition is
shown in red.

(a) Transient: t ∈ (0, 3000) (b) Long-term: t ∈ (2000, 3000)

Figure 5.16: Phase plots of the Munteanu model for ξ = 0.08, a = 20 with initial
conditions near B showing transient and long-term behavior. The initial condition is
shown in red.
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Figure 5.17: Trajectories of the Munteanu model for ξ = 0.08, a = 20 from near H
(black) and B (orange) settling onto the same limit cycle for t ∈ (2000, 3000).

another region of the phase space. When we plot only the long-term behavior from

t ∈ (2000, 3000), we see that it also settles onto a period-1 limit cycle for ξ = 0.08, a =

20.

It appears to be the same limit cycle that we had from initial conditions near H.

We confirm this by showing the phase plots of both cases for t ∈ (2000, 3000), in the

same graph in Figure 5.17. We see that the limit cycle from the trajectory emanating

near B shown in orange, indeed settles onto the same limit cycle from the trajectory

emanating from near H shown in black.

We can interpret this behavior physically, as an unstable equilibrium configuration

at r < 1. The star will tend to exhibit behavior nearer to the conventional equilibrium

configuration H, and that is why we see that in the long term, the behavior of phase

plots from near these two distinct fixed points eventually coalesce.

5.7 Non-adiabaticity period-doubling route in the

Munteanu model

Having identified the presence of limit cycle solutions in the Munteanu model after

the cessation of transient behavior, we now move on to expounding on the period-

doubling route to chaos from variation in the non-adiabaticity parameter ξ discussed
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in Munteanu et al. (2003) [26]. For this evaluation, the parameter controlling the

strength of the κ-mechanism was held at the constant value of a = 20, and the

trajectories considered were those near the conventional fixed point H. The period-

doubling phenomena can be found from increase of ξ in the range 0.08 ≤ ξ ≤ 0.16.

We show this period-doubling route to chaos in Figure 5.18. We see that it is the

increase of ξ that leads to the bifurcation of solutions from a period-1 solution at

ξ = 0.08, to a period-2 solution at ξ = 0.09, to period-4 at ξ = 0.108, and then to the

chaos at ξ = 0.12 [26].

5.8 κ-mechanism period-doubling route in the

Munteanu model

A similar period-doubling route to chaos but from variation in the κ-mechanism

control parameter a was characterized by Saitou et al. (1989) [37]. This time, the

strength of non-adiabaticity is held constant at ξ = 0.08, and the strength of the

κ-mechanism control parameter is varied between 10.1 ≤ a ≤ 20.

We show this period-doubling from the decrease of a in Figure 5.20. Decreasing

a from a = 20 to a = 16, we see a period-1 solution and then a period-2 solution

respectively.

For a = 15, Saitou et al. (1989) reported that for the parameter values ξ =

0.08, a = 15, that the system exhibited a period-4 solution. They did this by counting

the limit cycles shown on the phase plot [37]. However, we find that this is in fact a

period-6 solution, and not period-4. Using a Lorenz Map in p, we more clearly see

that in fact we indeed have the 6 points corresponding to a period-6 solution, and

not the 4 points we would expect for period-4. This is shown in Figure 5.19, which

we previously presented in our work in [43].

We see the presence of a chaotic solution for this period-doubling route when

a = 13.5.

5.9 Physical implications of limit cycles and chaotic

solutions in the Munteanu model

We recall that long-period variable stars are known to exhibit alternating deep and
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(a) Period-1: ξ = 0.08 (b) Period-2: ξ = 0.09

(c) Period-4: ξ = 0.108 (d) Chaos: ξ = 0.12

Figure 5.18: Phase plots of the Munteanu model with initial conditions near H for
a = 20, showing a period-doubling route to chaos from variation in ξ.
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Figure 5.19: Lorenz Map in p of the Munteanu model for parameter values ξ =
0.08, a = 15, showing a period-6 solution. We previously presented this plot in [43].

shallow minima in their light curves [5, 19]. We note that physically, the luminosity

L light curves in fact exhibit two maxima for every one maximum in a cycle of the

radius r or the radial velocity v. This is because the luminosity has a maximum

around both the time when the radius r is at its maximum, and also when the radius

r is at its minimum and the temperature is increasing [37]. This means that when we

say our dynamical system in (r, v, p) has a period-1 solution, the luminosity would

be period-2. This shows the importance of the formation of limit cycles in our phase

plots of the Munteanu model, as these limit cycles allow us to replicate the behavior

alternating deep and shallow minima you would expect for a period-2 or higher light

curve.

We recall from our derivation in Chapter 4 that the normalized luminosity ℓ can

be given by

ℓ ≡ L

L⋆

= rβpδ. (5.22)

This then allows us to plot the time-series or light curve of ℓ next to the time-series

of r, so that this proportionality in their periodicities can be seen. We show this for a

period-1 case in r(t) and corresponding period-2 case in ℓ(t) in Figure 5.21. In these

time-series, we use our dimensionless time t, which we recall is defined as t = ω⋆τ ,

where the characteristic frequency is ω⋆ =

√
GM

R3
⋆

.

The chaotic solutions of the model are important, as we know that some long-

period variable stars do in fact possess low-dimensional chaos [7]. We of course expect

that a chaotic solution in one of our state variables such as r would also entail chaos
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(a) Period-1: a = 20 (b) Period-2: a = 16

(c) Period-4: a = 15 (d) Chaos: a = 13.5

Figure 5.20: Phase plots of the Munteanu model with initial conditions near H for
ξ = 0.08, showing a period-doubling route to chaos from variation in a.
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Figure 5.21: Time-series of r(t) and ℓ(t) in the Munteanu model showing the cor-
responding proportionality in their periodicities for ξ = 0.08, a = 20. Here, t is our
dimensionless time t = ω⋆τ .
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Figure 5.22: Time-series of r(t) and ℓ(t) in the Munteanu model showing chaotic
oscillations for ξ = 0.12, a = 20. Here, t is our dimensionless time t = ω⋆τ .

in the luminosity ℓ. Even though these are chaotic, and it is difficult to probe this

simply by inspection, we present the time-series of r(t) and ℓ(t) for a chaotic solution

in Figure 5.22.

Now that we have discussed the dynamical behavior of both the Stellingwerf and

Munteanu models, we move on to a deeper analysis of the chaotic regime of the

Munteanu model in the next chapter.
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Chapter 6

Strange attractors of stellar
pulsation in the Munteanu model

All memories are traces of tears.

Wong Kar-Wai
2046

In the presentation of the phase plots and time-series of chaotic solutions of

the Munteanu model in the previous chapter, the chaotic nature of the curves were

inferred merely from visual inspection. In this chapter, we use the tools developed

in Chapter 3 in order to better characterize the strange chaotic attractors of the

Munteanu model.

We first begin by the presentation of the Lorenz Maps of the pressure p and the

radial velocity v for both the non-adiabaticity route and the κ-mechanism route to

chaos. This allows us to more easily compare the geometric forms of the strange

attractors corresponding to chaotic solutions from these two routes.

We then move on to our reconstruction of the strange attractors using time-delay

embeddings. We identify the minimum embedding dimension and appropriate delay

times.

6.1 Period-doubling route to chaos in Lorenz Maps

of the pressure p

In order to present the period-doubling route to chaos for both the non-adiabaticity

and κ-mechanism routes, we first present the Lorenz Maps of the pressure p showing

the said period-doubling phenomena.

69



1.4 3.5
1.4

3.5

pn

p
n
+
1

(a) Period-1: ξ = 0.08
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(d) Chaos: ξ = 0.12

Figure 6.1: Lorenz Maps of p of the Munteanu model a = 20, showing a period-
doubling route to chaos from variation in ξ. We previously presented these plots in
[43].
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(a) Period-1: a = 20
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(b) Period-2: a = 16
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(d) Chaos: a = 13.5

Figure 6.2: Lorenz Maps of p of the Munteanu model ξ = 0, 08, showing a period-
doubling route to chaos from variation in a. We previously presented these plots in
[43].
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We show the period-doubling route from the variation in the parameter controlling

the amount of non-adiabaticity ξ in Figure 6.1, which we previously presented in [43].

We see that the period-1, period-2, and period-4 solutions are more easily determined

by simply counting the corresponding number of points.

The period-doubling route from variation in the strength of the κ-mechanism a is

shown in Figure 6.2, which we also previously presented in [43]. This time, we show

period-1, period-2, and period-6 solutions.

When we compare the forms of the Lorenz Maps for the chaotic solutions from

both routes to chaos, we see what appears like an inverted parabola in both cases. This

similarity points to a similarity in the structure of the strange attractor from these

two distinct routes to chaos, for these specific parameter values. This shape is similar

to a Lorenz Map of the Rössler system [1]. Thus, it is possible that the Munteanu

attractor may share some similarities to the dynamics of the Rössler attractor that

can be expounded upon in future work.

6.2 Lorenz Maps of the radial velocity v

The study of Saitou et al. (1989) made use of Lorenz Maps maps in v for com-

parison with observational luminosity Lorenz Maps of long-period variable stars [37].

This was done because maxima of radial velocity v, are said to have correspondence

with half of the luminosity ℓ maxima. We may recall from the previous chapter, that

luminosity ℓ exhibits two maxima for every one maxima of r or v. Thus, Saitou et

al. (1989) considered that radial velocity Lorenz Maps would prove to be a suitable

comparison with the observational luminosity data of long-period variables available

at the time. The reason that Lorenz Maps of the luminosity were not rendered di-

rectly is that since ℓ = rβpδ is a rather complicated term, the chaotic solutions would

present much difficulty in use for comparisons [37].

Considering that we now have modern space telescopes such as Kepler, Gaia,

the Transiting Exoplanet Survey Satellite, and other more advanced observational

systems, there is also some capability in directly measuring the radial velocity of stellar

surfaces [13]. This means that Lorenz Maps of the radial velocity v can potentially

be used as direct probes of the strange attractors of chaotic long-period variables in

nature. Direct comparison of v Lorenz Maps of one-zone models with observational

luminosity ℓ return maps may no longer be necessary in the future. This is helpful,
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Figure 6.3: Lorenz Maps of the radial velocity v showing “y”-shaped structures
from both routes to chaos. We previously presented these plots in [43].

as we need not lose information about the second luminosity ℓ maxima in each cycle

that v exhibits no correspondence to.

It had previously been found by Saitou et al. (1989), that within the chaotic

regime corresponding to variation in the strength of the κ-mechanism, the range

13.5 ≤ a ≤ 14, for ξ = 0.08, had Lorenz Maps of v exhibiting a “y”-shaped structure.

Furthermore, they found that the Semiregular variable stas S Vul WY And showed

“y”-shaped observational luminosity Lorenz Maps matching these synthetic v Lorenz

Maps [37].

We discovered that the non-adiabaticity route to chaos also produces strange

attractors with similarly shaped Lorenz Maps of v. This is found for a = 20 within

the parameter range 0.11 ≤ ξ ≤ 0.125. We previously presented this result in [43].

It becomes evident that the strange attractors from both the κ-mechanism a and

non-adiabaticity ξ routes to chaos, for these parameter values, must have very similar

features due to the striking similarity in the “y”-shaped morphology of the Lorenz

Maps as shown in Figure 6.3. As previously discussed in Chapter 4, the κ-mechanism

and the non-adiabaticity generally correspond to different physical processes. Thus,

it is definitely interesting that the Munteanu model predicts the chaos resulting from

these two different routes to have such similar strange attractors, as seen in the Lorenz

Maps.
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It is possible that the similarity in the forms of the strange attractors from both

these routes present actual possibilities for the forms of chaos in long-period variables

in nature. Going back to the work of Saitou et al. (1989), they did not present an

analysis of the physical processes of the Semiregular variables S Vul and WY And

that showed the “y”-shaped observational luminosity Lorenz Maps. Thus, it cannot

be concluded with finality that those stars got their “y”-shaped Lorenz Maps from

the κ-mechanism a route to chaos. The non-adiabaticity ξ route thus presents a valid

alternative source of these shapes.

We further consider that some Mira variables, being cooler, may have values of

the non-adiabaticity ξ higher than that for the RV Tauri and Semiregular variables

presented in the work of Saitou et al. (1989), where the non-adiabaticity was held

constant at ξ = 0.08. It is possible that the non-adiabacity chaotic regime corre-

sponding to a = 20, 0.11 ≤ ξ ≤ 0.125, may mean that some Mira variables may tend

to exhibit such “y”-shaped Lorenz Maps. As we previously noted in our previous

work, since there are many similarities in the pulsations of RV Tauris, Semiregulars,

and Miras, this outcome may not be totally surprising [43]. It would definitely be in-

teresting though if it can be shown in the future that similarities in chaotic pulsations

between these different types of long-period variables can be attributed to routes to

chaos from the differing physical parameters corresponding to the κ-mechanism and

the non-adiabaticity.

However, as we also posited in our previous work, it may be the case that the

similarities in the forms of the strange attractors as revealed in the v Lorenz Maps

are simply a degeneracy within the model and do not correspond to similarities ex-

hibited by these stars in nature [43]. We reiterate that one-zone models are very

simplified models, and thus this would not be an entirely surprising explanation for

this similarity.

6.3 Time-delay embedding reconstruction of the

strange attractors

In a similar but perhaps more robust spirit to the use of Lorenz Maps to charac-

terize the strange attractors using only one state variable, we perform a time-delay

reconstruction of the phase spaces of chaotic solutions of the Munteanu model. As

discussed in Chapter 3, Takens’ Theorem allows us to reconstruct the topological form
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Figure 6.4: Plots of average mutual information I(τ) for the state variables r and
v, for the κ-mechanism route to chaos: a = 13.5, ξ = 0.08.

of a strange attractor using only a single state variable [41]. By this reconstruction

of the strange attractors of the Munteanu model, we attain measures of the optimal

delay time τopt and embedding dimension de. These values can then potentially be

used in future work for comparison with attractor reconstructions arising from ob-

servational data of chaotic long-period variable stars. There has already been work

done on time-delay embedding strange attractor reconstruction from observational

data for some chaotic astrophysical phenomena such as in X-ray binaries and some

long-period variable stars [30, 32].

So as to further our characterization of the chaotic solutions that produced the “y”-

shaped Lorenz Maps, we focus our reconstructions on the solutions with parameter

values a = 13.5 and ξ = 0.08 corresponding to the κ-mechanism route to chaos, and

a = 20 and ξ = 0.12 corresponding to the non-adiabaticity route to chaos. For both

these cases, we calculate the optimal delay time τopt and embedding dimension de. We

perform time-delay reconstructions using the radius r and radial velocity v, to see if

there is any variable dependence exhibited by τopt and de. Performing reconstructions

in both r and v may also allow for an increased applicability of this work in the future,

depending on what observational data is available for long-period variables.

Using the Mathematica® package of Ruskeepää, we first find the optimal values

of the delay time τ using the method of average mutual information, where we have

chosen a bin width of 0.01 [36].

We show the plots of the average mutual information I(τ) for varying τ , using

both r and v as the chosen state variables, for both the κ-mechanism route and the
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Figure 6.5: Plots of average mutual information I(τ) for the state variables r and
v, for the non-adiabaticity route to chaos: a = 20, ξ = 0.12.

non-adiabaticity route in Figures 6.4 and 6.5 respectively. We see that the plots of

the average mutual information I(τ) show roughly the same form for all four cases.

When time-series of r are used for the time-delay embedding, we get an optimal

delay time of τopt = 79 for the case of the κ-mechanism route, and τopt = 81 for the

case of the non-adiabaticity route. Since, as we stated, the selection of an optimal

delay time τopt is rather arbitrary, the differences between these two values may be

considered negligible. Thus, we can say that the optimal time delay when r is used as

the state variable is τopt ≈ 80. For the case when time-series of v are used, we get an

optimal delay time τopt = 73 for both cases. This similarity in the optimal delay times

τopt between these two differing routes to chaos, for both r and v, furthers our claim

that the structures of the strange attractors from these two cases are very similar.

Now that the optimal delay times τopt have been calculated, the minimum embed-

ding dimension de can now be found using the method of false nearest neighbors. In

Table 6.1, we show the percentage of false nearest neighbors for varying embedding

dimension de. We see that when the radius r is used as the state variable for the

time-delay reconstruction, the percentage of false nearest neighbors already falls to

zero when de = 3 for both the κ-mechanism and non-adiabaticity routes to chaos.

Thus, this may be considered as the optimal embedding dimension when r is used.

However, when we use the radial velocity v for the embedding, the percentage

of false nearest neighbors only falls to zero starting when de = 4, for both routes

to chaos. This poses a bit of difficulty, as plotting something in four dimensions is

obviously quite challenging. We note that the percentage of false nearest neighbors
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Route to Chaos State variable
Embedding dimension

de

Percentage of false
nearest neighbors

(%)

κ-mechanism:
a = 13.5, ξ = 0.08

Radius: r

1 99.6227
2 19.8836
3 0
4 0
5 0

Radial velocity: v

1 99.5608
2 22.6
3 0.48252
4 0
5 0

Non-adiabaticity:
a = 20, ξ = 0.12

Radius: r

1 99.55489
2 19.5756
3 0
4 0
5 0

Radial velocity: v

1 99.6551
2 18.0215
3 0.23682
4 0
5 0

Table 6.1: Percentage of false nearest neighbors for varying embedding dimension
de, for both state variables r and v, in both the κ-mechanism and non-adiabaticity
routes to chaos.

is on the order of tenths of a percent when de = 3, thus it is possible that de = 3

may also be a suitable embedding dimension for time-delay reconstructions using v.

Nonetheless, we are more assured that de = 4 is the optimal embedding dimension

for embeddings using the radial velocity v as the chosen state variable.

We present a summary of the results for finding optimal values of the time delay

and embedding dimension in Table 6.2. Using this information, we are now able to

plot the reconstructed phase spaces using time-delay embeddings in r and v. We

present these in three dimensions for all cases, since we are unable to plot the recon-

structions using v in four dimensions.

The time-delay embedding reconstructions using r for the κ-mechanism and non-

adiabaticity routes to chaos are shown in Figures 6.6 and 6.7 respectively. We show

the effect of increasing the delay time τ up to τopt. We see that the points of the phase

plot seem to spread out more evenly along the axes until we reach the corresponding

optimal delay time τopt. By inspection, we see that the forms of the plots for both

routes to chaos look very similar. It is also interesting to observe that when τ = 40, the
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Route to Chaos State variable
Optimal time delay

τopt

Optimal
embedding dimension

de
κ-mechanism

a = 13.5, ξ = 0.08
Radius: r 79 3

Radial velocity: v 73 4
Non-adiabaticity:
a = 20, ξ = 0.12

Radius: r 81 3
Radial velocity: v 73 4

Table 6.2: Summary of the optimal time delay τopt and embedding dimension de for
state variables r and v in the time-delay embedding reconstructions of the strange
attractors from both the κ-mechanism and non-adiabaticity routes to chaos.

(a) τ = 1 (b) τ = 20

(c) τ = 40 (d) τ = τopt = 79

Figure 6.6: Plots of the time-delay embedding reconstruction using the radius r with
varying delay time τ for the κ-mechanism route to chaos wherein a = 13.5, ξ = 0.08.
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(a) τ = 1 (b) τ = 20

(c) τ = 40 (d) τ = τopt = 81

Figure 6.7: Plots of the time-delay embedding reconstruction using the radius r with
varying delay time τ for the non-adiabaticity route to chaos wherein a = 20, ξ = 0.12.
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(a) τ = 1 (b) τ = 20

(c) τ = 40 (d) τ = τopt = 73

Figure 6.8: Plots of the time-delay embedding reconstruction using the radial
velocity v with varying delay time τ for the κ-mechanism route to chaos wherein
a = 13.5, ξ = 0.08.

time-delay reconstruction plots using r even seem to closely resemble the qualitative

shapes of the original chaotic phase plots using all the original state variables (r, v, p)

shown in Figures 5.18 and 5.20. While qualitative, this resemblance does lead us to

more easily believe that there exists a smooth invertible map between a time-delay

embedding reconstruction and the original phase space as posited by Takens’ Theorem

[41].

We now similarly present the time-delay embedding reconstructions using v for

both the κ-mechanism and non-adiabaticity routes to chaos in Figures 6.8 and 6.9.

As previously stated, we plot these in three dimensions, in contrast to the optimal

embedding dimension of de = 4, due to the difficulty of visualizing a four dimensional
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(a) τ = 1 (b) τ = 20

(c) τ = 40 (d) τ = τopt = 73

Figure 6.9: Plots of the time-delay embedding reconstruction using the radial ve-
locity v with varying delay time τ for the non-adiabaticity route to chaos wherein
a = 20, ξ = 0.12.
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plot. The fact that the percentage of false nearest neighbors is still very low for

de = 3 indicate that these three-dimensional reconstructions may still be suitable.

We once again notice that the reconstructions of from both routes to chaos resemble

one another. While the qualitative resemblance to the original phase space plots of

(r, v, p) in Figures 5.18 and 5.20 is not as evident in our time-delay reconstructions

using v as in the ones using r, we still see the presence of some features like the wide

opening that exhibits the absence of any trajectories.

Having found the optimal delay times and embedding dimensions for what ap-

peared as “y”-shaped strange attractors in Lorenz Maps, these time-delay embedding

reconstructions may serve as another basis for testing the possible validity of the

Munteanu model when compared to observational data of real long-period variable

stars.
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Chapter 7

Conclusions and further work

Death closes all: but something ere the end,
Some work of noble note, may yet be done,

Not unbecoming men that strove with Gods.

Alfred, Lord Tennyson
Ulysses

7.1 Summary and conclusions

We explored two one-zone models of stellar pulsation with parameter values

corresponding to long-period variable stars. In the first model, we considered the

constant opacity exponents n = 1 and s = 3, as proposed by Stellingwerf (1972) [38].

The second model we considered was the autonomous Munteanu (2003) model, which

now made use of the dynamically evolving opacity exponents put forward by Saitou

et al. (1989) [26, 37].

Using a dynamical systems approach, we sought to find equilibrium solutions of

the Stellingwerf model of constant opacity exponents by solving the equations of

motion in terms of the radius, radial velocity, and pressure on the shell (r, v, p). Our

novel result is that the Stellingwerf model of constant opacity exponents exhibits

an infinite number of equilibrium states. In phase space, these states all lie along

the parametric curve E = (r, 0, r−4). To the best of the author’s knowledge, this

equilibrium curve in the model has not yet been discovered previously. While this

equilibrium curve includes the conventional fixed point H = (1, 0, 1), deriving directly

from the hydrostatic equilibrium case of Euler’s Equation, small perturbations away

from H may lead to the star settling onto another fixed point along E .
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Since we could not use linear stability analysis on the entirety of E in the full three-

dimensional phase space, we performed linear stability analysis on the individual fixed

points of E on the two-dimensional r = constant slices which span the entire phase

space (aside from r = 0). Through this, we showed that on these surfaces, the fixed

points of E are always stable. Specifically, for physically relevant values of the radius,

these fixed points are stable spirals. This led us to posit that trajectories in the full

three-dimensional phase space, emanating from initial conditions near H, were likely

to exhibit spiral-like behavior before ultimately settling on some part of E . This

behavior is precisely what we observed. We further found that the decrease of the

non-adiabaticity parameter ξ leads to an accentuation of this spiral-like behavior,

along with a corresponding faster approach to E .
However, due to the transient nature of the oscillations that we identified in this

model, we find that it cannot reproduce the long-term oscillations expected for long-

period variable stars. Thus, our unique insight is that in the formalism of the dy-

namical system used here, the constant opacity exponents n = 1 and s = 3 are not a

good choice for use in modelling long-period variables.

On the other hand, for the Munteanu model which has dynamically evolving opac-

ity exponents, we contribute to the established literature by providing the specific

classifications of the three equilibrium solutions, which are all fixed points. These had

previously only been generally identified as unstable by Munteanu et al. (2003) [26],

so we added a more precise characterization of these solutions. We found that, for the

relevant values of the parameters a and ξ, the fixed points H and B ≈ (0.68, 0, 4.75)

are saddle-foci, while the physically unrealistic C ≈ (8.8858, 0, 0.0002) is an unstable

focus node. We noted that trajectories emanating near C end up as unphysical di-

vergent solutions. An intriguing behavior we observed is that trajectories emanating

near B end up settling onto the same limit cycles that had previously been found by

Saitou et al. (1989) and Munteanu et al. (2003) around the fixed point H [26, 37].

We also gave specific focus to the period-doubling routes to chaos in the Munteanu

model from the variation in the κ-mechanism control parameter a, and the one from

variation of the strength of non-adiabaticity ξ. Through the use of Lorenz Maps of

the pressure p, we show this period-doubling phenomena clearly via the increase in

the number of points on the maps. Using this, we correct a claim by Saitou et al.

(1989) that the a = 15, ξ = 0.08 solution of the model is period-4, we in fact find
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that it is more correctly described as period-6 [37].

Saitou et al. (1989) had previously characterized a chaotic solution of the Munteanu

model with parameter values a = 13.5, ξ = 0.08 from the κ-mechanism route to chaos

as showing a “y”-shaped strange attractor in its Lorenz Map. This was said to show

a correspondence to observational luminosity return maps of the Semiregular vari-

ables S Vul and WY And [37]. Our unique discovery is that the chaotic solution

with parameter values a = 20, ξ = 0.12 from the non-adiabaticity route to chaos also

exhibits a clear “y”-shaped strange attractor in its corresponding Lorenz Map. This

is noteworthy as it may mean that the luminosity return maps of those two stars,

and potentially others like them, could just as well be described as having strange

attractors from the non-adiabaticity route to chaos.

Finally, we performed time-delay embedding reconstructions of the attractors with

the parameter values corresponding to the two “y”-shaped Lorenz Maps from the two

distinct routes to chaos. We found that when the radius r is used for the reconstruc-

tion, we get an optimal delay time of τopt ≈ 80 and minimal embedding dimension

de = 3, for both routes to chaos. On the other hand, when the radial velocity v is

used, we have τopt ≈ 73 and de = 4.

The work we performed using the Lorenz Maps and time-delay reconstructions

is potentially useful in that it adds to the body of results from the Munteanu one-

zone model that may be compared to observational data of long-period variable stars.

As we expounded upon earlier, the fact that these make use of only a single state

variable at a time, such as the radius r or radial velocity v, may more readily allow

for comparisons with observational data. This is because such observations may not

simultaneously have good data for more than a single state variable at a time.

7.2 Recommendations for future work

We hope to be able more completely prove the stability of the equilibrium curve E
in the Stellingwerf model by the identification of a corresponding Lyapunov function.

This would allow us to identify the specific regions of phase space wherein the stability

of E holds.

With regards to the Munteanu model, a full characterization of the parameter

space {a, ξ}, such as the construction of a two-parameter bifurcation diagram would

allow for a more complete exploration of possible chaotic solutions in the model.
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Furthermore, with the presence of data from modern space telescopes such as

Kepler, TESS, Gaia, etc., it would be of much interest to compare the solutions of

the Munteanu model with observational data of irregular pulsations of long-period

variable stars. As we previously stated, the Lorenz Maps and time-delay embeddings

we performed may allow for more straightforward comparison with such observational

data, since they make use of only single state variables such as the radius r and radial

velocity v.

Finally, a more complete identification of some of the geometric measures of the

strange attractors in the Munteanu model such as the Lyapunov exponents, correla-

tion dimension, etc. would also be of interest.
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