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Problem Set 1 Physics 225

I would like to thank Ronald Panganiban and Gedrich Dy for some of their insights into our discussion

regarding this problem set. I however certify that the solutions below are my own work.

Problem 1

Solution

We consider that the coordinate components of a vector must transform

x↵ ! y↵
�
x�

�
(1)

according to

V 0µ =
@yµ

@xv
V ⌫ . (2)

We must show that the action of the coordinate basis one-form dxµ
on V

dxµ(V ) = V µ
(3)

also transforms according to the formula in (2). We note that (3) is equivalent to the action of the

vector V on the one-form xµ
.

V (xµ) =
@

@x↵
(xµ)V ↵

(4)

V ↵ @

@x↵
(xµ) = �µ↵V

↵
(5)

V ↵�µd = V µ
(6)

Thus, it’s clear that

dxµ(V ) = V (xµ) . (7)

So if we show that V (xµ) transforms according to (2), then we would have equivalently shown that

dxµ(V ) transforms as such.

We find that we can enact the transformation on (4).

@

@x↵
(yµ (x�))V ↵ =

@yµ

@x�

@x�

@x↵
V ↵

(8)

@yµ

@x�

@x�

@x↵
V ↵ =

@yµ

@x�
��↵V

↵
(9)

@yµ

@x�
��↵V

↵ =
@yµ

@x�
V �

(10)

Thus, we can see in (10) that (4) transforms like (2). Therefore, (3) also transforms like (2).

We now consider the coordinate transformation given by

T =
c

g
sinh

✓
gt

c

◆
+

x

c
sinh

✓
gt

c

◆
(11)

X =
c2

g

✓
cosh

✓
gt

c

◆
� 1

◆
+ x cosh

✓
gt

c

◆
. (12)



We seek V T
and V X

in terms of V x
and V t

.

Taking the differentials of T and X, we find

dT = cosh

✓
gt

c

◆
dt+

1

c
sinh

✓
gt

c

◆
dx+

xg

c2
cosh

✓
dt

c

◆
dt (13)

dT =
⇣xg
c2

+ 1
⌘
cosh

✓
gt

c

◆
dt+

1

c
sinh

✓
gt

c

◆
dx (14)

dX = c sinh

✓
gt

c

◆
dt+ cosh

✓
gt

c

◆
dx+

xg

c
sinh

✓
gt

c

◆
dt (15)

dX =
⇣
c+

xg

c

⌘
sinh

✓
gt

c

◆
dt+ cosh

✓
gt

c

◆
dx. (16)

We can then use (3) on (14) and (16) to get

dT (V ) =
⇣xg
c2

+ 1
⌘
cosh

✓
gt

c

◆
dt(V ) +

1

c
sinh

✓
gt

c

◆
dx(V ) (17)

V T =

⇣xg
c2

+ 1
⌘
cosh

✓
gt

c

◆�
V t +


1

c
sinh

✓
gt

c

◆�
V x , (18)

and

dX(V ) =
⇣
c+

xg

c

⌘
sinh

✓
gt

c

◆
dt(V ) + cosh

✓
gt

c

◆
dx(V ) (19)

V X =

⇣
c+

xg

c

⌘
sinh

✓
gt

c

◆�
V t +


cosh

✓
gt

c

◆�
V x . (20)

Q.E.D.



Problem 2

Solution

We have the inertial coordinates

x0 = t (1)

x1 = x (2)

x2 = y (3)

x1 = z. (4)

Our Minkowski metric has the components

gµ⌫ = diag(�1, 1, 1, 1). (5)

We now consider the given Rindler Coordinates

x̄0 = ⌧ (6)

x̄1 = � (7)

x̄2 = y (8)

x̄3 = z. (9)

We have the transformation given by

t = ⌧ cosh� (10)

x = ⌧ sinh�. (11)

We can then use this to find the components of the metric in this coordinate system. We first start by

trying to find the line element ds2.

We get the differentials of (10) and (11).

dt = cosh�d⌧ + ⌧ sinh�d� (12)

dx = sinh�d⌧ + ⌧ cosh�d� (13)

Thus, we can "square" these to get

dt2 = cosh2 �d⌧2 + 2⌧ sinh� cosh�d�d⌧ + ⌧2 sinh2 �d�2
(14)

dx = sinh�d⌧ + ⌧ cosh�d�. (15)

Due to (3) being the same as (8) and (4) being the same as (9), we get

dy2 = dy2 (16)

dz2 = dz2. (17)

Now from (5), we know the line element ds2 is of the form

ds2 = �dt2 + dx2 + dy2 + dz2. (18)



Using (14), (15), (16), and (17), we arrive at

ds2 =
�
sinh2 �� cosh2 �

�
d⌧2 + ⌧2

�
cosh2 �� sinh2 �

�
d�2 + dy2 + dz2. (19)

This simplifies to

ds2 = �d⌧2 + ⌧2d�2 + dy2 + dz2. (20)

We can then write the components of our metric as

gµ⌫ = diag
�
�1, ⌧2, 1, 1

�
. (21)

We now seek to find the region of Minkowski spacetime covered by these coordinates. Since the

transformation in (10) and (11) is defined by hyperbolic functions, it motivates us to use the identity

cosh2 �� sinh2 � = 1. (22)

This is then applied to

t2 � x2 = ⌧2
�
cosh2 �� sinh2 �

�
(23)

t2 � x2 = ⌧2. (24)

The form of (24) looks familiar, as a similar form is used to define the invariant spacetime interval in

Taylor and Wheeler’s Spacetime Physics textbook.

From (3), (4), (8), and (9), we see that we have no restrictions on y and z for the Rindler co-

ordinates. We also note that (24) is the equation of a hyperbola for constant ⌧2.

Noting that

⌧2 � 0, (25)

so that

x2 = t2 � ⌧2. (26)

Combining (25) and (26), we get the condition

x2 6 t2. (27)

We now use this to graph the our region onto the xt� plane of Minkowski spacetime on Desmos.

Figure 1: Region of xt� plane of Minkowski spacetime covered by the Rindler Coordinates.

We can see that the orange curves are hyperbolas that plot constant values of ⌧2 as we predicted. The

blue regions show the possible region. Thus, the Rindler coordinates cover the region of Minkowski

spacetime defined by the condition in (27), with no restrictions on y and z.
Q.E.D.



Problem 3

Solution

We have a coordinate system with metric components given by

gxx = 1 (1)

gyy =
1

cosh4(y)
(2)

gxy = 0. (3)

In matrix form this is

gµ⌫ =

✓
1 0
0 1

cosh4(y)

◆
. (4)

We seek the geodesic equation for this coordinate system and to solve it for x and y.

We consider x and y as functions of the arbitrary parameter �.

x = x(�) (5)

y = y(�) (6)

We denote the derivatives with respect to � as

dx

d�
= ẋ (7)

dy

d�
= ẏ. (8)

We consider the Lagrangian formulation. We first get the line element from (4).

ds2 = dx2 +
1

cosh4(y)
dy2 (9)

We seek to minimize the distance on a curve given by

S =

Z B

A
ds (10)

Z B

A
ds =

Z B

A

s
dx2 +

1

cosh4(y)
dy2. (11)

Using the parametrization, we get

Z B

A

s
dx2 +

1

cosh4(y)
dy2 =

Z B

A

s
ẋ2 +

1

cosh4(y)
ẏ2d�. (12)

Since the square root is monotonic, to extremize (12) we consider

L = ẋ2 +
1

cosh4(y)
ẏ2. (13)

This then yields two Euler-Lagrange equations.

d

d�


@L

@ẋ

�
=

@L

@x
(14)



d

d�


@L

@ẏ

�
=

@L

@y
(15)

We first deal with (14).

@L

@x
= 0 (16)

@L

@ẋ
= 2ẋ (17)

d

d�


@L

@ẋ

�
= 2ẍ (18)

2ẍ = 0 (19)

This yields the geodesic equation in x
ẍ = 0. (20)

We now deal with (15).

@L

@y
=

�4

cosh5(y)
(sinh(y))ẏ2 (21)

@L

@y
=

�4

cosh4(y)
tanh(y)ẏ2 (22)

@L

@ẏ
=

2

cosh4(y)
ẏ (23)

d

d�


@L

@ẏ

�
=

2

cosh4(y)
ÿ +

�8

cosh4(y)
tanh(y)ẏ2 (24)

2

cosh4(y)
ÿ +

�8

cosh4(y)
tanh(y)ẏ2 =

�4

cosh4(y)
tanh(y)ẏ2 (25)

Solving for ÿ, we get the geodesic equation in y

ÿ = 2 tanh(y)ẏ2. (26)

We now seek to solve the geodesic equations (20) and (26).

We start with (20). We perform a series of integrations. Note that we will have multiple constants Cn

from integration, that we will relabel from time to time.

Z
ẍd� = ẋ (27)

ẋ = C1 (28)

Z
ẋd� = x (29)

This yields our solution for x.

x(�) = C1�+ C2 (30)

We now work on (26).

We consider the identity

ÿ = ẏ
dẏ

dy
. (31)

Equation (26) thus becomes

ẏ
dẏ

dy
= 2 tanh(y)ẏ2. (32)



Multiplying both sides by dy and integrating, we get
Z

dy

ẏ
=

Z
2 tanh(y)dy. (33)

ln |ẏ| = 2 ln | cosh(y) | +C3 (34)

Taking the exponential of both sides of both sides of (34) and rearranging, we get

ẏ = C4 cosh
2(y). (35)

We rearrange and integrate once more.

1

C4
tanh(y) + C5 = � (36)

tanh(y) = C4�� C4C5 (37)

Relabelling arbitrary constants, we get

tanh(y) = C3�+ C4. (38)

We then solve this for y to get the solution to that geodesic equation.

y(�) = tanh�1 (C3�+ C4) . (39)

We now introduce a coordinate transformation with a flat metric described by

g = dx02 + dy02. (40)

Equating this to the original metric yields

dx2 +
1

cosh4(y)
dy2 = dx02 + dy02. (41)

Looking at (30) and (40), we can assume both x and x0
are linear in �. So this motivates the putative

transformation given by

x = x0. (42)

Thus, (30) can be rewritten as

x0(�) = C1�+ C2. (43)

To make (38) linear, we need to free lambda from the inside of tanh�1
. This motivates the transfor-

mation given by

y0 = tanh(y). (44)

Applying this to (38), we get

y0(�) = C3�+ C4. (45)

We can easily see that (42) and (44) are equations of straight lines in �.

We can check that (41) and (43) are indeed the correct transformations. We take their differentials.

dx = dx0
(46)

dy =
1

cosh2(y)
dy0 (47)

Squaring these, we do indeed get the equality of the metrics in (40).

Q.E.D.



I would like to acknowledge the help
provided by Ged rich Dg and Luke Gurren
In my answering of this problem set .

I however certify that the following
work is from my own efforts

MiB
Miguel Yolo



SET 2

1)

We have the vector field V on M of the form
U

V = V 2n . Cl )

we let
g = guudxmdxv Cz)

be a metric on M .

A) We want to show that something of the form

Vp Gpa
& (3)

are components of a covector
, by transformation properties .

We can take the metric from the chart

B{xn) {y } - 141
Thus , (2) may be equivalently expressed via transformation as

g = gun 3×5*3×5. dy dy. . 1st

With

gpa = gun 3×5*351 , cos

as the components in this new chart .



Similarly , we consider the transformation of the vector
in (1) Via the transformation in (4) .

We get

✓ = 37: V " 2,3 .

(7)

This then has components

B
=

Fb VM . (8)
ZXM

We now "act " g on V in this new chart .

Since

g E (0,2) (9 )
and

VE (I, O) , do)
we expect

g (V, . ) E- (0,1) Cll )

which is a covector .

In { yB} then, the components of Cll ) would be

5.TB = gun 3×5*35197: Vm . an

Using "cancellation" to simplify this, we have
( 13)5.TB =3;: guru .



We know a covector 's components transform as

2x
M

WB 2 y
Wu (14)

This matches the form of CB)
,
and thus have shown the

validity of (3) o This also matches our prediction in CH) .

B)We want to know if 2mV" is a tensor
.

We know this is equivalent to

2mW = 22µV . 1151

To find out whether or not this is like a tensor, we must find
out whether it transforms like a tensor .

V" looks like the component of the vector , so we transform it
between the charts

{ Xv } { y 's} . ( 161

So like (8) , we get

*
=

FY (173
Qu V

"
.

Now Tru looks like a basis vector
,
so it should transform

covariantly, as its index is covariant (co goes below) .

{Xu} { ya} ,
does

as
2 ( 19)Ja z ya



So
,

" like" 114).

2
. Ffa 2n (207

2
,

FXM 2
.

(21 )
Try a 2xu

So now we want to see if 2, VB looks like a tensor

2M 2 TryB
Fa

B
=

zyazxu
(
gyu V

"
(22)

By the product rule

a
. 13=3×139: ncvytv 3×5.2*133: ) . as,

a. 0=3×139: anti- 3×5. or am

The first term on the RHS of 124) looks
like the transformation of a Cl, 1) tensor .
However

, the additional second term screws

this up .
So unless the second term is

Zero , 2µV u is not a tensor!

nor like components of a tensor .
The second derivative is not how we expect
tensors to transform .



c) We now want to check if

2µV
"
- Ju VM = Lyn V

- Txu M

1251

are the components of a tensor .

The transformation of 2mV
"
is given by (24) .

Jv transforms as

2
, 3×5*2 Go)

↳ 3×5*24 ' KH

✓M transforms as

✓a =
2yd VM (28)
ZXM

So Ju VM transforms as
zxv 2 2yd VM (29)↳Vd zyB 2×0 2N

By product rule

⇒v . 39434.3µm vnzxj.3.is: so,

BV . 39434.2mi- vn3%3:3: on



So , (25) transforms as

a

.:*: smut as:#v
a. V
"
-

ask.gg:3#avn+g;:3::inva.v..a.r.=3ii3I:anv.:xi. :# ar.
(33 )

.

i :X: ::S's.rs;: ::::"

Once again the terms in the first parenthesis look okay .
However, the terms in the second parenthesis screw it up

similarly to that in B) .

Thus
, these are not the components of a tensor .

The 2nd derivative cannot become 0 in
general, since the numerator is a partial
in the y chart, while the denominator is
in the x chart .



Now, we want to check if

2µW - Juku = Lyn v
- % u

( 34 )

are the components of a tensor .

Let 's first focus on 2mW . The transformation of 2n is shown

in (20) and (213 .

Now
, transforming Vu via (lb), we consider this has a covariant
index . Thus, this transforms like

✓ DX
"

Vu (35)
P 2yB

Thus
, 2mW transforms as

Ja V
, 3×13×43"yoVv (361

Using the product rule

a. v
. 3×5.3.gs?.uVutVu3xyI3.u3;:s72aV.3xyI3.yI2nVutV. 2¥. I ago 130

It then becomes easy to construct the transformation
of Juhu from this . It is

2. Va 3513g: auvntvu 3513191, ex



So the transformation becomes

3g:3.

air
.
+ v. 'II. 31%.

no,am
.
-2
. "

gxjzxj.a.vn the 3%315,
Regrouping terms

gxs.zxg.am. 3;:3;iav. ".2. v
.
-2
. "

-

v.¥, In. v. 3×5.315,
2xM v

aya Lfp Truth - Juku (421

" V
.
-2
. "

t

v. z±, In. v. 39.315g.
We consider that

22×0
2×n2yB

= Iyo III 43)

Txu
gym

= fun
,

( 44)

so 22×0
= 0 ( 45)

2xm2yB
Similarly then, 23M

zxuzya
= 0 (46)



So,

a. V
.
- 2. Va 3513.5! 2mV. - au Vu . can

Thus
,
these are the components of a tensor .



2)

A)
We let

f : M → N Cl )

be a differentiable map .

"

With

h E C
-

(N) Cz)

and
YET* N , (3)

we want to show

f-*( ha )=ff*h)ff*a ) . (9)

We can represent f as

y¥=fPfxA) , (5)

wherein M has the chart {XA} and N { yep} . Chosen for convenience as they

We represent y as

match the lecture

4=413 dy'D . (6)

Thus
,
we find via transformation, via pullback

4

f-
*

a = µ, 7¥! ) dx " CH



We represent h as

h = h ( gt3) - log

Then
, the pullback acts on h as

f- * h = h of (9)

f-* h = h (y#HAD . (lol

Thus ,

ff*h)ff*y) = h (YBCXAD (43 }Y DX " . Ch)
T

Now , for f-* ( ha), note that ha is a scalar multiplication .
Thus

, we expect a similar transformation to (7) .

I

f- * ( ha) = (ha, 3¥! ) dx 't . (121

Since this is in the {x"} chart
,
we expand h in terms of

this considering h is originally C-C-(N) . Thus, we get

f- * ( ha) = ( h (YBCXAD 43 }Y dx " (13)

f- * ( ha) = h (y#HAD µ, }Y dx " 114)

( 14) and ( Il ) are identical,thus

f- * ( ha) = (fth)HH) (151

(14) is already a local coordinate expression .



B) for simplicity, we use the same charts for Mandu .

We consider

X E TM (16)

Y E TM . 1171

We have X and Y represented as

X -- X
"
2 ( 18)A

F
Y -- Y 2

,
119)

We find that the push forward works as

£X= XA 2g
2xA % (20)

f-
*
Y ' F 290 2g .

121)
2x F

Since these are both vectors C- TN now, we expect the commutator to work as

f*Hf*Y f*X*Bf*y ? f*y"2
,
#
'

To 1221

We now work on expanding this
rf*X*Bf*Y X'

" 3×4.72,
" 290 123)
2x F

x' 3×9.72,
"

37? X' 3×9? Ty, "

37? 1241



By product rule ,

Ty, "

2¥? -

- FI?f÷, '=3:3? . as,

Thus
,

t*X*Bf*Y ' x' 3×9? FAI Fazyr
Try's 2xF 2yBqF

' (26)

So, we expect

t.iq#xoYF377ZtI3F.axA3g:3i. . a⇒

We evaluate the 2nd derivative as

2250=2 ago
2yB2xF axe gyp (28)

3%3×7=3*8 :
. eat

2-yr
= O (30)

Try axe
which evaluates to O

, since the Kronecker delta is a constant .

Similarly, 22yr
. (31)

So we get ,
2y02xA=

O

rf*X*Bf*y X' 3×773×7? Go

f*y%pf*X ' Y'' 377279¥: . 133)



Thus
, 122) becomes

f*X,f*Y X' 3×9?¥7 Fb
"

- Y '
-
- 3773772¥: so 134,

Considering dummy indices and rendex ing the second term

I. x. f. Y x' 3×97*7 - yazy.az#zfiiaocss,
Factoring this,

f-
* X. f. Y 3×9?¥? X

"
- Y'tf¥ ar Go,

We now work on the RHS : f-* X. Y
we note that

X. Y E TM .

(371

And it gives

X. y = X
"

JAY F - Y"# XF 2e (381

A push forward on this
, considering both A and F indices then gives
r

f-
*
X. y = 37,79¥. X -"BYE - Y" F 2g . (39)

1-
*
X. Y 3×9?¥? X''Ef

"

-

'lazy: ar . cus
Thus

,
indeed

f-
* X. f-* Y f-

*
X. Y 141)



3)

We have the map

of : MKIR
'

) 1133
,

CD

which is given by

(hit)= Coslyttrslh (E) cosh) , Zsinlhltrsin#sina.ro/hz)C2 )

GCU,r) (xlurl.ly/u.r).zCu,r)) . (3)

In this case
,
u and r are bounded. as

O U 21T
,

(41
and

- I V l . (5)

A) We want to plot the image

(a) CIR
'

(6)

Using Mathematica, we see that this is the Mobius Strip .



B) The Euclidean Metric in IR
'
is

g = dx
'
t dy

'
t dz ' . (7)

We want to compute the pullback operation 01*9 .

We know that

g : TNXTN IR
,

(8)
SO

#g : TMXTM IR . (9)

Considering M has the chart

{xA } = { ur} , Clo)
and IR' hat the chart

{ yd } - {x. y,z} , CH)

we apply the formula derived in class

of'*g=(gap 37%37,73 )dx" ④dxB.az,
So we now calculate

§Xu= - 251hL4)tr# cos cosy)- sin sinful) (13)

2x
yr

= COSMISM# 114)

§Yu = 2 Cos (4) tr ( f-cos inluttcoslusinfz)) ( 151



§} = sin# sinful 116 )

ZZ
=
-Ir sin (I

' ) (171
24

ZZ
= Cos ( ¥) 118)

ar
)

From (7) we know that

gap = ( too ! ! ) . 497

Thus
,
we only have to consider the diagonal terms of 49) in 112) .

Therefore
, the components are

#g) un -- 34%+3931+3539 cus

Hgh. -- 3131+3131+353: an

#g) a.=3:3'tt3u3rt3u3E
a"

#g) ru
-

- 31%+3%9+3535 . Cass

(22) and 123) are clearly equivalent , so

#g) ur = (4*9) ru . Can



Using Mathematica , these evaluate to

g) un = 4 t 34 V2 - I r ' cos (u ) t 4 rsinfhz ) (251

g)ur = I (26)

#g) ur = 0 (271

#g)*= 0 (28)

Thus
,

¢*g= (4 t V'( Z, - I cosh)) t 4rsm(¥)) du't dr
' (29)

Geometrically, Of*g is interpreted as an induced metric from N
to M . In our case this was from the Cartesian chart on IR

'

{ x. ya } to the chart {ur} on M CIR?



4)

We let

g = DO
'

t sin
>

Qd 0/2 (D

be the metric on the two - sphere in spherical coordinates .

We have the killing vector

K = 2g . Cz)

We want to show it

£kg = O . (3)

The components of £ g are given by

⑦* 9)nu
-

- 9in
,

K't % Kint go.pk?uC4l
For (2)

, since all its components are constant .

Lol,µ = 0 (51

Jp, = O (6)
So

⑦
*
9)nu

-

- 9ms, g)
"

HI

From ( t ) , off - diagonal elements of g are 0
Goto = O (8)

Gop = O (9)



⑦
*
9)
*

= (Zoll )) lol t ( falls) H Clo)

⑤
*
9)
*

= O Ch)

⑦
*
9)
go,

-_ ( Folan't)) lol tf#sin't)) ( l ) ( iz)

⑦
go,
9)
go,

= 0 (131

Thus
, by 18)

,
(91,1111 . and (12) , indeed

Fagg = O 443

Finding another applicable vector field amounts to solving (3) .
Since a two -sphere is constant in r, we only have to consider 0,4 .

So we have to solve (4) as

(Ekg)o, = O list

(Ekg)
,

= O 1161
to

(Lkg) too = 0 117)

(Ekg) = 0 lies
410



By symmetry ,

(Ekg)*= ( theg)oo .

497

So , we only have three equations to solve .
( 15) becomes

of# k¥39# KEgoo-ZEEsaozkottsoo.IE:9#3kot..oao,
considering 18) and (9) , this becomes

Tifft htt 229¥ KO t 2 goo 3¥' -- O KD

Plugging in
,
this becomes

If l htt Ig l Kott 21113¥
't

= O . 1221

2 Gtfo = O . (23)

The condition may be simplified as

2K
't

go
= O . (24)

(lb) becomes

Off' k¥398' K'tgoofkftsoiozko.IS#3kfIs*3koY- 0h51



Considering 18) and (9) , this becomes

9043¥
"
t goof = 0 126)

Plugging in, we get

sin't 3¥73 = O 127)

( 18) becomes

Aff'dhtt iodkotgao, 3¥79# Iif't goof#Ego,p3kf=o 1281

Considering (8) and (9) this becomes

toff'dkttB$kt9*3*19*341=0 1291

Plugging in
,
this becomes

off Sin't Kt 't §¢ Sin't K4t2smF3kf = O 130)

251nFcost K¥2 sin't 3k¥ = O (3D

Dividing by 251nF , we get
cost KO t Sint }kf = O 132)



So our conditions are 1241, (271 , and 132)

(24) tells us that
ko = Kfc

, (33)
since it can 't have A dependence .

(27) and (32) can be rewritten as

sin't }'t
't

-3k¥ 1341

Cost ktt = - Sint §kf (35)

(33) and (35) yield
KOTO) = - TANA 2K

"
136)

24
Rearranging and integrating , this becomes

- COTO /k%Dd¢=fk4dk4 137)

K 't = -Coto IKOT dot . 1381

Using (38) in (34 ), this 9 ""
-

2kt
(za,sin't fo -Coto 1KUSD01 20

-
2K
't

51nF Csc't ) Kotto) dot = got 140)

1kUSD01 =
- 3k£ 1411



( 41 ) gives

f) ktcohdddo = - KOTO) . 1423

Solving (42) is of course equivalent to
- 24kWh)
ya

= KOTO) ( 431

- Koto,
24k¥,

(441=

2/02
when we differentiate twice

,
and move the negative sign .

The solution to this DE is obviously

KYO) = A sin of t B cos 0 , 1451

where A and B are some constants .

(38) then yields

KP = - COTf) Asin lot Bcosol dot (46)

KP = Acosfocotf - BsmOlcott (47)

Since the killing vectors in this case take the form

K K
't
to t K42p, 148)



we have

K = Asin lot Bcosol Jot ACOSOICOTQ - BsmOlcott 2g (49)

In the interest of plotting , we assume

A = / (50)

B = I
,

CST)

and that the radius of the two -sphere

R =/ . (52)

So that

K = Sindtcosy 2ft COSOfCOTE - Sind COTA 2g (53)

Figure I . Plot of vector field K
0h Unit two -sphere .



Miguel Yuto 2018-04845 Physics 225 SET 3

I would like to acknowledge the help
provided by Luke Gurren

, JR Olden
,
and Val Balagon

In my answering of this problem set .

I however certify that the following
work is from my own efforts

thziag
Miguel Yuto



1)

We seek to prove

a ( Rebcd We)= We a Rebcd + Rebid a We
- (1)

We note that in index - free notation

Re bed = R(dxeidb.de , 2d) (2)

Rebcd = dXe(R( 2b.de)
.

2d), (3)

which in terms of a tensor product is

Reba = CCCC dxe☒R☒2b☒2☒2d . (4)

We can then interpret Rebcd We as Reba acting on

a one - form

Re bedWe= ((((( w☒R☒2b☒2④2d - (5)

Thus
,
the covariant derivative acts on this as

WCCCCC W☒R☒2b☒2④2d = ((((( Dw(w☒R☒2b☒2c☒2d - (6)



We can expand this as

Dw W ④ R④2b④2c④2dt

W④DwR④2b④2c ④ 3rd t
. (7)( (((( Dw (w④R④2b④2c④2d -- CCCC W R④Dw2b④2④2dt

W R ④ 2b④Dw2c④2dt
W R④ 2b ④ do ④Dw 3rd

Considering that for a metric - compatible connection, which we assume,
the covariant derivatives of vectors vanish

w 2b (81

w Fc (9)

w Ld - Clo)

Thus
,
(7) simplifies to

((((( Dw (w④R④2b④2c④2d = (CCCC Dw w ④ R④2b④2④2dt
. ( ID

W④DwR④2b④2c ④ 3rd

Translating these terms back into abstract index notation gives

(( ( (( Dw w ④ R 2.④2. ④ ad = Read Dawe (12)

(( ( (( W DWR④ 2b a ④ ad we Da Read is (B)

where we have taken the covariant derivative as Da -

Thus
, adding these together and using (51, we get

a
Re badWe = WeDa Read t Rebcdtla We - ( 14)



2)

We have the metric

g = df
'

t sin't dye . CD

i ) We can calculate the Christoffel Symbols from
the Euler-Lagrange equations we use for geodesics .

Consider that in general, the geodesic equations take
the form

go + IT! Idi 's = O . G)

We take the Lagrangian as

[ = gap Xd Xo 's . (3)

It can be seen that the metric in CD is diagonal,
so we expect two geodesic equations .

Reading off the metric
,
(3) gives

[ = of
'

t Sino 452 . (4)

Where the • represents a derivative Wrt . our

parameter t .



Starting with the F equation, we require

ft ft - If = 0
.

GT

where in

%, = 251nF cos0-0/2
, ( o )

ft # =3, 2 ,
H

and

22¥ If = 2E , (8)

Therefore
,
the geodesic equation reads as

2 - 251nA Cosa of = O . (9)

In the form of (2)
, this simplifies to

⑤ - sinfcosf of = O - Clo)

Now
, for the 4 equation , we require

ftp.lf - 94=0 . an



wherein
2L

= 0
210

' ( 12)

2g! If =3, Isin't it , 113)

and

22¥ If = 251nF OT t 4sino-coso-O-O.CH)

Therefore
,
the geodesic equation reads as

251nF II t 451nF cost = O . (1st

In the form of (2)
, this simplifies to

OT t 2 COTE = 0 . Clb)

Using (2), we can read off ( IO) to find
#f

Moog = - 51nF cost . (17)

Reading off (16) ,
2. COTO = Toft too . Cloe)

Since

FY = Pff , 1193



Pd
of

= COTO (20)

Pol
too.

= COTO
'

(21)

All other Christoffel symbols are O .

it For a Vector V
, the equations of parallel transport are

given by
DV

= O (22)
dt

(dat 't ITV ' To = O - (231

Thus
,

dat 't I,!V9iP= O . 1241

For our only non-zero Christoffels then , we have for 0=0

dat 't Tf; Vol
.

= 0 Cast

dt
- V 451nA Cosa

°

20=0 i 126)



For 0=01, we have

dV°'+MV0oi+I¥V°É= 0
dt 0-01

(271

dV0
at

+ COTQ V00 + V10 Oi 2¢ .
(28)

Iii) For constant latitude

D- (t) = O_O
,

1291

(26) gives

dV°
- V4 sina.ws 0-00=0 130)

dt

dvo
dt

= Vttslnoocosoo
•

.
(3/1

128) gives

dvd
at

+ COTQ V00 + V01 /O) (32)

dvd
dt

=
- COTQO

°

V0 .

(33)



Now for constant longitude ,where

/ (t ) = to . (341

126) gives

dV0
dt

= V%nQcosO- 1351

dvo
dt

= - (36)

Thus
,

V0 = C
, (377

Where C is some constant .

(281 gives

dV0
at

= - COTQ V00 + V10 Oi 138 )

dV0
at

= - COTQV ① . 139)



For transporting a vector around

a right spherical triangle, let's consider

P = ( 0,10) (401

P
,
= -6,0) (411

13=1-1,0) 1421

B-- ( EX ) ' (431
and back to the North Pole

Py =/C- , X) (44)

B- =(E. 0) . 1451

So at P, we just have

Vp
,

= Up
, 2¢ 1- Up? 20 . 1461

From P, → Pz
,
this is constant longitude . And

④ = 1 . 1471
So from (37)

Vp? = Up? , 148)
and 139) gives

dV0
at

= - COTQV ( t) (49)



Taking the chain rule, we can use

d do d
1507

dt
=

dt do
'

and considering 1471

dV0
do.

= - COTQ V0 . ( 51 )

considering
① initial = C-

.
( 52)

V0
initial

= V01 -0=4 (531

✓ Ina , = V90 -- E ) (541

Solving , we find

- fdlf! = / COTQDQ 1551

In -V01 In Sino t D (501

V4 = ✓ Ymha , 51nF . (57 )

Thus
,

Vp? = Up? since) (58)



1

Vp
,

= Up?sm(E) 20 1- Up? 20 (59)

Now
, for Pz B. this is constant latitude .

Note that
j= , , 160)

From 131) and 133)

duo
dt

= ✓ ¢5M E) cos ¥) (61 )

dvo
dt

= 0 162)

d¥= - ( 0T¥ V0 (63)

dvd
dt

= O ' 164)

(62) and (64) imply

V0 = constant (65)

V10 = constant ,
(66)

so

Vp? = Up? 1671

Vp? =Vp? 168)



Vp? = Up? 1691

Vp? = Up? sin (E) . (7-0)

Now for B → Py
,
this is constant longitude , where

! = -1 . (7-1)

Similar to 148) and 158) , we have

Vp? = Up? (7-2)

Up? = Up? SINCE) , (7-3)

which give

Up? = Up? (7-4)

Up? = Up? Since) . 1751

Now for Py → B- , this is constant latitude , where

§ = - I 176)

From (31) and (33)
,

dvo
at

= ✓ $5M E) cos E) - (7-7)

dvo
at

=-V 5th E) cos E) (7-8)



dvd
at

=
- COTE V01- 1) (7-9)

dvd
at

= COTE V0 . 180)

Using chain rule,

dV0
do,

1-D= - Hsin E) cost ) (81 )

dV°=V¢sm E) cosy 182)
dot

dvd
doll

-D= COTE V0 ( 83)

dvd
do,

= COTE V0 . 1841

Differentiating (84) by to

ÑV°=
- COTA)dV0 .

1851

d
'

d

Plugging in 182) gives

ÑV
=
- COTCE) V4 since)cos(t) ( 86)

d
'



IT
=
- cos
'
C- V4 . (871

d
2

This is solved as

V0 __ Acoscoscto Bsm Costello - (887

Plugging this into 182) gives

dvo
a

= SMIEICOSIEIACOSCOSE + Bslh Cost -189)

Integrating 1891 then we get

VK-SMC-cos.CA/coscosEd4tB/s1hCosEdol9DV0---SlnEASlncosEBcos(cosE
. 1911

We apply the initial conditions of Pi, to this to give

ftp.?--AcoscosCt)XBsincosCt)X 1927

Up? since) ACOSCOSCEIX BSMCOSCEIX 193)

V0 __ SME Asin cost ✗ Bcosfcos EX 194)Py

Up? -_ SME Asin cost ✗ Bcosfcos EX last



For simplicity , let

cos (E) ✗ =k (961

Up? Since) = C 1971

Up?
Since)

= D (99)

solving for A and B, we find that

A =
C- Bsmlk)
cosck)

COSCK)
(100)

D
A = sina.pt B "Stk) no ,)

SM (K)

(
- Bsmlk)

sin,µ
+ Bcoslk)

coslk) coslk)
=

D
sin (k)

(102)

B( SMH) + coslkl C
-

D

coslk) Slnlk)) = coslk) sink)
(103)

B ( sintkcosck, = Cslnlk) - Dcoslk)
Slnlk)cos(k)

( 104)

B = ( sink) - Dcosck) (1051



Plugging 1105) into ( 100) gives

C
A =

cosy,,

- ( SM ( K) - Dcosck) smlk)
COSCK)

(106)

A = (
( 1- SMTKD

+ Dsm (k) (107)
cos 1k)

A = ( cock) + Dsinlk) . 1108)

Therefore
,

A = Up?Since) cos cos(E)✗ +
VP?
since)

SM cos(E)✗ ( 109)

B = Up?since) sin cos(E) y -

VP?
since,

COS COS(E)X . (1/0)

From ( 88) and 191) then we find by inputting

10=0 , (HD

V¥= A- cos cos(E) Bsm cos(E) 1112)

V¥= A 1113)

V¥= Up?Since) cos cos(E)✗ +
VP?
Since)

SM COS(E)✗
,
(1/4)

and

✓ ①
= sin C- A sin cos C- (o) Bcosfcos c- (O) ( 115)

Ps



V0
-

= - B SME 1116)
Ps

V¥= Up? cos cos(E)X - Up?Since) Sin cos(E)X . ( 117 )

We find the difference in the angle G between
Vp

,
and Vps by calculating the

"dot product"

g. (Vp, , Vps) = Up
,

V13.1 cos G) (1/8)

g. (Vp, ,VPs)
(1/9)cos G) = Tips

g. (Vp, ,VPs)
cos G) =

i 11201

g. (Vp, , Vp, )
'

g(Vps, Vps)
"

we will also take the limit .

By the metric being diagonal,

glvp.lk/--Vp?'go.otVpY9oo 11211

Taking the limit
, we find

g(Vp
,
,Vp

,
) = Up?

'

(1) + HI, Vpit
"

SIÑO
⇐ o 11221

9(Vp
,
,Vp

,
) = Up? 't Hyo Vpit

'

sin
'

C- 11231

9(Vp
,
,Vp

,
) = Up?

'

' (124)



9 (Vp
,
,Vp

,
) = Up? . 11251

Up? cos cos(E)X - Up?sin (E) Sin cos(E)X '
gwp.NP.t-t.Y.io

Strict) Up?Since) cos cos(e) y 2
""

+
Up?
Since)

SM cos(E)✗

This simplifies to

9Nps.VE/--.Y7oVp?ioscosCt)XtVp?ZsincosCt)XC12719Nps.Vp.)--Vp?
"

(1281

9(Vps ,Vps) = Up? . ( 1291

Now,

to

g(Vp
, .VE/=Y..;yVP?VP?c0sc0slt)X-Vp,SlnK-)Slncos(c.)✗

Up? Strict) VPYSMZK-lcoscoscc.jp 11301

+
Vp?
Since)

SM cos(E)✗



9Np.ve
.)=¥Io Up?

>

cos cosctix to 1131 )

9(Vp
,
.VE/--Vpf2cosX) . 1132)

Plugging into 1120) gives

Up?
_

cos X)
cos G) - -

11331

Vp? Vp?

Cos G) - cos X) ( 134)

} ✗ '

(1351

Thus
,
the vector is rotated by the
same angle it passed along the

equatorial path .



3)

We base this off the May 19 lecture .

We can expand That? bide as a complete antisymmetrization

1
That?bc]de= -6Pa Rbcde-TLRcr.de/-PbRcadDbRacde+TfRabde-TfRbade.CD

Considering the skew - symmetries

Rabcd = - Rabdc (2)
and

Rabcd = - Rbadc
,

(3)

we find
☐Rcbde = -Da Rbcde (4)

Pb Racde = - Pb Reade (5)

①Rbade = -Th Rabde
. (6)

So (1) Simplifies to

Tfa Rbc]de=¥(2Pa Rbcdel-ZDBRcadetZDRar.de) (7)

Tfa Rbc]de= } Rbcdetpbrcadel-DRar.de) - (8)

Since we want to show that the LHS of (8) vanishes,
we only need to show that the terms in

the parentheses vanish.



The RbcdetDBRcadet RR abde = O (9)

Considering

17g = O
, Clo)

we raise by gen .

gen Da Rude = Da (gen Rbc de) i

Cli)

This leads to

Da (gen Rbc de) = Da R bed " ( 12)

Applying this contraction to the other two terms gives
en n

g Db Reade = Db Road (13)
and

gentleRab de =D, Raba
"

- (14)

Thus
, (9) becomes

Da R bed " t Db Read
"

t Tk Raba
"

-

- O .

"5)

Therefore
,
in order to prove the Bianchi Identity,

we just have to show that ( 15) holds .

We now follow the reasoning of Bohmer .

Consider that for a general rank (2,0) tensor T ,
with a Torsion - free connection

a b Tca - b a
Tcd - Rabe

"

Thd tRaba" Tcn . ( 16)



Thus
,
for the covariant derivative of a one - form cwd

,

we get by (167

d b cwd - b a cwd
- Rabe"

n Wd +Raba
"

own
. (17)

For a one - form wa , we would get

b c
Wd -

c b Wd
- - R

"

dbcwn , ( 18 )

which by skew - symmetry is equivalent to

b c
Wd -

c b Wd
- Rbcd " Wn - ( 19)

Applying Da to 119 )
, we get

a b c
Wd - a c b Wd

-

a Rbcd " Wn - (20)

By the product rule, the RHS expands to give

a b cwd - a c b Wd
- AR bad

"
Wnt Rbc d

"

awn
' (21)

We note that (A) and (a) should be equivalent expressions .
We show this by considering the permutation of indices abc in CH) .

c a bwd
-

a c b
Wd
- Rab

"

n Wd +Read
"

bwn (22)

b e a
Wd -

c b a
Wd
- Rbca

"

n Wd tRbd
"

awn - (23)



We now do the same for KD to get

c a bwd
-

c b a Wd
-

c Raban Wnt Raba
"

own (24)

Wd - Wd
-

b Road
"
Wnt Road" bwn

' (25)b C a b a c

Now
, adding 1171,122) , and (23) , we get

a b cwd - b a cwd Rabe
"

nwd + Rabd
"

own

+
c a bwd

-

a c bwd 1- Raab" nwd +Read
"

bwn (26)
t

b e a
Wd -

c bawd tryna nwd +Rbc ! awn i

Considering the Bianchi identity that

Rabe
"

t Rbca " t Rcab " = O
.

(27)

it follows that

Rabe
"

nwd
+ Rbc! nwd

t Rab" nwd =D . (28)

This means that (26) then simplifies to

a b cwd - b d 'Wd
Raba" own 1- Read

"

town
+

c a bwd
-

a c bwd (29)
+

b e a
Wd -

c b a
Wd

t Rbc! awn .



Now adding (211
, (241, and (25) , we get

d b cwd -
a e b

Wd AR bad
"
Wnt Rbc d

"

awn

+
c d bwd

-

c bawd t c Raban Wnt Raba
"

own
(30)

+
b e a

Wd -
b a cwd t

b Rogan Wnt Road
"

bWn
'

It is easily seen that (29) and (30) have the same LHS
,
so

the RHS are equal . We then cancel on both sides .

Raba" own
aRbcdnwntfhbcd

"

awn

+ Read
"

bwn t
c Raban Wnt Raba

"

own (31)

+ Rbc: awn t
b Road

"
Wnt Road" bwn -

This yields

aRbcd" Wnt
b Road

"
Wnt

c Raban Wn = O (32)

aRbcd" t b Road
"
t

c Raban Wn -- O - (33)

Since Wn represents any one - firm , then in general

aRbcdnt b Road
"
t

c Raban = O . (341

Thus
, we have shown ( 15) and have consequently proven

aRbc de - (35)



4)

We have the diagonal metric

g. = - ( It 20/1×7)dt
'
t dx't dy't dz? Cl )

where
GCI) . (2)

We can calculate the Christoffel Symbols from
the Euler-Lagrange equations we use for geodesics .

Consider that in general, the geodesic equations take
the form

go + IT! Idi 's = 0 . (3)

We take the Lagrangian as

[ = gap Xd Xo 's . (4)

It can be seen that the metric in CD is diagonal,
so we expect two geodesic equations .

Reading off the metric
,
(4) gives

[ = - ( I t 20/1×7)t't I't yo't EZ (5)

Where the • represents a derivative Wrt . our

parameter T .



For Xi we have have the Euler-Lagrange equations

d 2L
2×5

(6)
DE a ,ii

2L

d
2×05 B. (1+20/1×7) É (7)

DE

2×05 = -22; (E) ÉZ (8)

ji =
- 2j0(E) ÉZ . (9)

We put (9) In the form of (3) and switching index to i

Ñi+2io(✗)t"=O -

Cio)

For the time component, we have

d
dz

- ( 11-2/01×7)2É It - (1+2/01×-1) :L
' al )

-ZÉ (11-20/1×7) -2:L 22, with Wii = -22+0/1×7 -12112 )

É(1+2/01×7) +2+101×7%+22. (I)Éx"= 437

Putting this in the form of (3) gives
É + 2-0/1×7 Iz +22-0/1×7 iii.

.
114)

11-2011×7 11-2011×7



Reading off ( lo) then

pi
tt

= Tri 0/1×7 . 115)

Reading off 114 ) then

2+101×7
,Tt =

1+201 ,,,
1161

tt

and
Pt
⇐

=

% (%)
117)

1+2011×7

It 2-0/1×7
. 118)

ti

=

11-20/1×7
With all other Christoffel going to zero

'

since for example, we never get terms
with it

,
and
, Xiii

The geodesic deviation equation is

(191
DZÉD d c b

dye
=
- Rddcb U Z U .

The Riemann Tensor is calculated as
d d e d e d. (zo)Rd Abc = 2b ac
2C ab

+
ac be

-

ab ce



Let's start calculating the Riemann Tensor components .

We keep in mind the identities that

Rddbc =
- Rdacb (217

Rdabc + Rdbca + Rdcab = 0 . (221

Automatically by 1211
,

Rdaii = 0 (231

Relate = 0 - (241

Now
,

Ri i i e i
e i. (zs)

dbc

= Fb ac
2C ab

+
ac be

-

ab ce

From 115 ) and 1211
, we note that only Rittc , Ritbt can be

non - zero for those with up index i.

Ri
-

tt;

-

- 2- 1¥
,
-2;FI + Fifi - Fi ao

Ri
tt;=2t(0) -2; (2-0)+1 Ii - 1¥10)) (a)

Ritt;= -2;2i0+¥ . Goes



By the skew - symmetry in (21)
,

Ritjt = 2;2i0 t . (29)
(1+20112

t

For up index t
,
we have Rtiit , Rtiti , Rttti , Rttit , Rijt

,

and Rtiti -

t t e t e t

Rtabc = 2b ac
2C ab

+
ac be

-

ab ce
(30)

For Rtiit
,

t t e t e t
(3DRtiit =2i it It ii +

it ie
-

ii te

Rtiit = di
di %) -2+101+17/7it it

-

t (32)
11-2/01×7 te

Rtiit = di 2-0/1×7 2.0/1×72
1+2/01×7 1+2/01*2

' (33)

By skew- symmetry in GD,

Rt#= di
di E) 2-0/1×72

. (34)
1+20/1×7 1+20/1×72

Now
,
for Rttti

t e t
-

e t

Rttti = It tit Fitt +
ti te tt te

(35)



2+2/01×7 -2 ;
2-0/1×7

1+201×9 1+2%+1%-17;
Rt =

136)
tti

- FIFE + FEET

2-0/1×7
-2 ;

2-0/1×7

Rt =

*
1+20/1×7 11-20/1×7

tti

2-101×72.011×7 2.0/1×5 2+0/1×72 i 7)

1+2011×7-2 1+2011×7 1+2011×5

By skew - symmetry in 1211,

2+2/01×7 -2 ;
2-0/1×7

Rttit = 1+2/01×7 1+2/01×7 Gog

Trilok) 2+0/1×7 2-0/1×7<+2-0/1×5
.

1+2011×7-2 1+2011×7 1+2011×5
Now
,

Rtijt = 2; itt It ijt + ite jet - i;e +
et (39)

Rti;t=2; 2-0/1×7 2+101+1%-1,¥ -101ft 140)

11-2011×7
2. 0/1×72101×9

.

141)Rti;t=2; % ☒

1+2011×7211-2011×7



By skew - symmetry into),
2- 0/1×72,-0/1×9Rtit;= 2; % %)

1+201 ,×yz
. (42)

11-2011×7
However, if we take only 1st - Order terms,

Ritt ;
- didi Ñ (43)

Ritjt didi Ñ (441

Rtiit (451

Rtiti 146)

(47)Rttti
Rt (481
tit

Rt 1491
ijt

Rt . (50)
itj

From / 19) , using 144)
,

D.zi
- Ritjtlltziyt 151)

dti

D.zi
dqz

- did; I lltziyt .
152)



In conniving coordinates

uh
*

. (52)

Therefore
,
52 can be written as

Ijzi
dy
,

- did; I Z
"

(53)

D'zi
dy
,

- did; Ñ
"

-

(54)

Wc note that in Newtonian gravity, acceleration is

given as

ai = - giirdi I . 1551

I = - I 156)

Note that if the metric is flat

Ji =3 ! 157)

which this is .

Thus,

gyzi
dqz

- 2%; Ñ
I
- (58)

We may then interpret this as

- 2%; I =
2

I. (59)



In terms of the acceleration in 1561, this is

2

§ • ② .

(60)

Thus
, -2%; I can be thought of

as relative acceleration .

The geodesic deviation can be thought of
as the relative acceleration of geodesics,
as zi represents the geodesic deviation

vector .

While we demonstrated this as an analog to
Newtonian gravity in conniving coordinates,

Ritjt di Ñ (611

this suggests a more general relation of

Riajbhdub 2%; I - (62)



5) ✓
We consider that by construction , the Ricci tensor is given by

Rac = gbd Rabcd , CD

and the Ricci scalar as

R -- g
"
R . Cz)dc

Thus
,

C bdR = gag Rabcd - (3)

We note that the Riemann curvature has the anti -symmetry

Rabcd =
- Rabdc

, (4)

and the identity

Rabcd t Racbd t Radbc = O - (5)

Therefore
,

Rlabcd] = O (6)

We showed in class that these symmetries imply that Rabid has

# = 112 D- (D'- D - ft)

independent components .

Thus
,
for two dimensions

, we have

# = I (8)
D=2

Independent component .



This will help us later
,
when we use coordinates .

This also then hints that in 213,

Rabid E R - (9)

We note that in 213

9ac9bd Sad Gbc 9ac9bd gadgib ' Clo)

From (3)

Gacgbd R
=

gacgbdgdcgbd Raised Cll )

Gac Tbd R = Rabcd - 42)

Similarly,

gadgets R = gadgcbgddgcb Racdb 113)

Gadgcb R = Racdb - (141

Since we showed that there is only one independent component
in ZD

,
we can denote it with symmetries

R 1212 = R 2121 (15 )

R 1212 = - R 2112 ( 16)

R 1212 = - Rizzi . ( 17)



This is also shown by the fact that (4) in 2b
makes

Riled = 0 (18)

Rzzcd = O (19)

Rabi , = O (20)

Rab 22 = O ' (21 )

For example

Rui , = - Ri , if , (221

So Rui , = O
,

(23)

as we
''

switched " these two 1 Indices .

Thus
,

Racdb = - Rabcd . (24)

Therefore
,

Rabid - Racdb = 2 Rabcd (25)

9ac9bd R - gadgcb R = 2 Rabcd
. (26)

Factoring, and considering ( IO)

2 Raised = 9ac9bd - 9ad9bc R (27)

=
I

Rabcd 2 9dc9bd - gadgbc R .
(28)



From Problem 2
,
we had the metric

g. = do't sin't dot? (29)

and the only non - zero Christoffel as

Moog = - 51nF cost (30)

top = COTO (3D

Mode = COTO . (32)

We note that by definition

Rama = 217: - 2dB: t Meted - IIe . ( 331

We showed previously , that we in fact only have
to calculate

R'
ooo

-

- 2. III -2pA: there - II: Tfo. 1341

From (30) , (31) , and (32), we note that most of these terms are 0,
so it simplifies to

RO-aooi-2o.TT - Tff Tff Gst

R
"

pool
= fo - 51nF cos f - Slhfcosf COTO (36)

R
"

pool
=
- cos
'
ft Sino -

- cos
'
f (37)



RO ¢= sin't . (38)

Contracting this , we get , considering the metric being diagonal

go-eRO-iooo-g.to/Ro-oootg04Ro-oooC39)gO-eRo-ooo--g00Ro-oootO 1401

Rotolo = sin't (91)

Roloff = Sin'f . ( 427

This serves as the LHS of the equation .

Now, we deal with the RHS .

We note that since the metric is diagonal ,

go.gg/oo = O . (431

Thus
,

{ Goo 900 -Goo Gao R { go.o.gg, R (44)

{ go.o.9oio-9oo9.pe R Isin't R . ( 451

To get the Ricci scalar
,
we first calculate

the Ricci Tensor via Cl) .



So

Roo = gbd Robed , (46)

which by the metric being diagonal simplifies to

Roo = got Roooatg Rotolo . 1471

Roo = gold Rotolo (481

Roo =

ginza
SIHZQ (49)

Roo = I 601

Similarly,
Rollo = gbd R old (51)

121001=900Rotoootg Rotolo (52)

1244=900Roloff . 153)

Rollo = Sin
>
A (541

By (2) and the metric being diagonal, we don't care about Root and Rolo .
Therefore

,

R = got Root gold Rpp (551

R = t
s ,Imo. SMZO (56)

R = 2 . (57 )



Plugging this into ( 451 gives

{ Goo. 9010 -Goo, Golo R Isin't 2) (58)

{ Goo Gold - Goo, Golo R Sino - (591

We see that (59)
,
the RHS

,exactly matches 1421, the LHS .

By ( 151.1161 , and (17) we also get

Rolo = sin't
,

Cbo)

R of
= sin't s (61 )

and
Rappa = Sin't

.

(62)



6)

Consider that the Faraday tensor is given by
o E ¥

Fux =
- E
"

O BZ - BY
. (1)

- EI -BZ O B
"

- EZ
e BY - B " 0

Considering the Lorentzian metric

Mva = diag f-1.1.41) , (2)

we get the lowered index version of CD at

Fu,
-

- h F.Bhu, 13)

O Ef Ef Ef - I O O

ii.

"

ooo ! ! !) :¥I¥o" tis: :O : ! !) ""- EZ
e BY - B " O

o - E - EI - E
E
"

O BZ - BY
.

(5)
Fu, = EI -BZ O B

"

EZ
e BY - B " 0

We note that

2µF, ] -_2uFut2vFut2iFuu - Tru Fm - Truth- a. Fun . (6)



Using anti - symmetry , this becomes

2µF, ] = 2uFut2vFut2xFuut2nFut2vFut 2. Fu , CH

Qufu , = 2 2uFut2uFut2iFuu . 10

Considering the condition that

Qufu , = O
,

G)

suggests that

Fufu,t2vFut2,Fuu= O - Clo)

We consider the convention that

i = 0,1 ,2,3 (tix, y, z .
(Il)

By inspection of (5)
,
and taking

1=1 , M
-

- 2 , V =3 , 112)
we see that
#

2215 , t BF , t 2 , Faz = O (13)
is equal " Iggy +231+2431--0 - ""

\

This is of course equivalent to

• B O list



We note that for an arbitrary vector V. the curl is given by

v - ay; - ay; it off . stay; - ay; z.ua

Thus
,
we can make use of this to find

2. B - 471

By inspection of (5)
,
and taking

1=0 , M
-

- 2 , V =3 . (18)
we get

2%+2312+2013=0 . (19)

This is equal to

22 EI - 23 Eft 2oB× -- O Ko)

y 2ft - 2E
' 122131=0 GD

Y ZZ

Multiplying both sides of (21) by C
,
we get

JEZ
-

LET 2B
"

=D . (223
Try zz at

This can be taken as the X - component of CA)

FEZ
-

LET 2B
"

.
(23)2. B

!
ay zz at



Similarly we find that taking
1=0 , U =/ , V =3 , (291

we get
F

,
Fo t 23 Fo, +2053 = O - 125)

This is equal to
-z

X

2
, t - 2, E - 20139=0 . (26)

Multiplying both sides by - I yields

y 2¥; - LEZ d 2123,7=0 . Cots

2x

As for the x- component , we get for the y - component

2.BE 2E
"

-

LEZ 2139=0 .

(28)

ZZ 2x
at

Similarly we find that taking
1=0 , U =L

,
V -

- 2
, (29)

we get
2
,
Kot 22 Fo, +2052 = O -

(301

This is equal to
- y X Z (31 )

Q t - ZE t 2013=0 .

This yields
y 2¥

'

- 2Ez× { 21234=0 - (32)
x

y

2- 2E '
-

2E
" I 2132=0 (33)

2. B
=

c at
i

2x ay



Thus, we indeed recover (17) from the amporients of Fufu ] .

Griffiths defines the Poynting vector as

I =
yo
Ex B . 1333

I 5 E

§ = -
E '' ET EZ (34)

Mo B
"

B
' BZ

J -
no

EYBZ- EZB' It EZB'' - E' BZ Jt EB's - E'B" Z - (353

The Electromagnetic Stress - Energy Tensor is given by

1- In, -- Luo F'MF
,

'
- I
, yw F'BE,

'

(361

We calculate Fu " as

Fav = hug FMV 1377

iii.
"

: : o÷÷⇐÷÷÷÷: :&. ..



o
-E -¥ - E

- E
"

O BZ - B 's

Fav = - EI -Bz O Bx

i

139)
- EZ
e BY - B " 0

The Poynting vector is interpreted as an
"

energy flux
"

along the direction or as the " momentum density
"

of the
i - th component . Thus, we only need concern ourselves with

the components Tekin, and Tgif, respectively .

From (36) then
,
the second term vanishes for these terms

,
since yuu

is diagonal

Tini -- tuo F" F
,

'
139)

io

Tien, = tho f-
"if
,

°
. (40)

starting with (39) ,

Tie'm, -- tuo F
"

F
,

'

1413

Tie'm, = tho loll tf KO ) tf f-Bt tf ( B' )) 1421

Tie'm, = Luo EY" - E:B
'

) -

143,

From (351 . this is clearly

Tou'm, =
S
"

. 1441
C



Tien -

- tuo F" F
,

'

lust

Tien, = tho loll tf KBZ) tf ( O ) tf f- Bx)) 1463

Tien, = Luo EIB
"

-

E BZ) (ya,

Tien, = {
'

. 148)

Tien, -- tuo F
"

F
,

'

1491

Tien, -- tuo lost tf If tf-E'll tf ( O ))

Tien, = Luo EIB
'
-

E'cB×) Cst)

Tim, = {
Z

. (527

Now, dealing with 140) , we find

Tien, -- Luo F" F
,

°

153)

Tien, Luol (Ott f tf-Bff t (B')f¥ )) (541

Tien, Luo EIB! EIB
'

) 155)

Tien, = E .

Go



Tim, -- Luo f-
"

F
,

°

157 )

Tia, Luol (Atl#t tfo If tf FEZ )) 158)

Tien, = tuo EIB
"

-

E BZ) Csa,

Tien, = Sj .

Cbo)

Tien, -- Luo F" F
,

°

1611

Tim, = 'aofEHHtfB'If tf f t ( 0K¥ )) 1627

Tien, = Luo EIB
'
- EYE) (631

Tien, = Sj .

1641

""''

Ii: ¥÷ . ..

We have thus retrieved the components of the

Poynting Vector, scaled by I , as components of the

Electromagnetic Stress - Energy tensor .



7)

The stress - energy tensor for a perfect fluid
is given by

Tab = p Ia udubtphdb a,

In flat spacetime .

We want to write out

Da Tab = O G)

for the components .

In flat space,

hab -- diag f- 1,1, 1,1) (3)

We have the Lorentz factor,
I

J = . (4)
I - E
(
2

We note that
ud -- TCC , Vi) . CST



Let's start with writing out the components .

This isn't as simple in a non - comoung frame .

For TOO,

Too =p ¥ Who t Ih
"

(6)

Too =P E (KKK) t El-D CH

Too =p ¥84 - I . Coe)

For Toi,

Toi =p ¥ unit 17h
"

ca)

Toi =p Ie Hc)(Wilt Elo) Clos

Toi =p ¥8'VE . all

It is easy to see that this also describes T
"

T
"

=p ¥8'VE . CR)



For Tid
,

T
"
=p Ia ni u't Ph

"
( 13)

T
"
=p Ie Willow) t RS " 1143

T
"
=p Ie 82 Vivi t IS" . 1151

We can now deal with conservation using (2) .

Since we're dealing in what is essentially an SR setting,
the Principle of minimal coupling allows (2) to become

Da Tab La Tab -

Clb)
It is easier to work with

Ja Tab 2b T
,

"

since Tab is symmetric

Note that
Jo = I It . (17)

For a -- O
,
we have

Ob

2b-1 = 0
, ( lol)

Jo Toot Zito
'
= O
, ( 19)

which leads to

{ It (P E 84 - E) t i P ¥8 'VE -

- O - ko)



For a -- i
, we have

2b Tib = O (21)

IoT
"
t 2;T

"
= O, 122)

which leads to

I 2 i

⇒ (P E 8 'Ve)t§×; P E 82 Vivi t IS" = O . 631

We now seek the Newtonian limit

( t D - (24)
Note that

Ilm J = I - (25)
(→to

Dividing (20) by c yields

E. It (P E 84 - E) t Zi P ¥8 ' vi -- O, cos

It (P E F- e) t Zi P ¥8 ' vi -- O - CH
E

Taking the Newtonian limit , considering E is constant wrt . t , gives

¥7
. . It (P E F. e) = rap Koe)

E at



and

HII. Zi P ¥8 ' vi = %. pvi . Caa)

Adding these gives

FP
+ §µ. pvi = O - (30)

at
-

This is indeed equivalent to the continuity equation in
terms of the Eulerian time derivative

TP
t . PJ ' ( 3D

at

From (23)
, we take the Newtonian limit

,
which gives

t;m+. Iff (p ¥8 'VE) = It (Pvi (32)

I;m+. %. P E 82 Viv't IS" = %. pvivit IS ") - (33)

Adding these, we find

It (pvi t ftp.pvivitPS ") = 0 (34)

riff tp wit ftp.pvivitPS ") = O . (35)
at



Expanding

ftp.pvivi/--vig2x,.PvitpviZx; Vi) - Csg

From (30)
,

Vi Jp = -
Vi }rµ. Pvi . (377

at

(35) then simplifies to

prdvitp viz; Vi) t ?µ. Isis
'

= 0 (381
at

Dividing by p gives

7¥ t Vi Zx; Vi) tp ?µ. If = O . (391

This is indeed equivalent to the Euler Equation

2J
zf
t Jo tf I = O . (40)


